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Abstract 

 

Fundamental physical constants are the only absolutes which exist at the moment. If they are not 

really constants then this is a serious philosophical problem. All measurements are binding to the 

fundamental physical constants. The cutting edge of the modern physics is high energy physics 

which can allow to go beyond Standard Model, to discover New Physics, and to understand 

better how the Universe came into existence (evolved). This may result in better sources of 

energy than the ones which are used now. Theories unifying gravity with other interactions (such 

as string theories and M- theory) allow or require variation of the fundamental physical 

constants. If one can determine precise enough limits for variation of fundamental physical 

constants it may help to choose the most adequate theory of unifying gravity with other 

interactions. This would be indirect theoretical verification of high energy physics. This 

verification is not feasible by experimental methods.  

We use Big Bang Nucleosynthesis calculations and light element abundance data to 

constrain the relative variation of the deuteron binding energy since the universe was a few 

minutes old, δQ = Q(BBN ) − Q(present). Two approaches are used, first treating the baryon to 

photon ratio, η, as a free parameter, but with the additional freedom of varying δQ, and second 

using the WMAP value of η and solving only for δQ. Including varying Q yields a better fit to 

the observational data than imposing the present day value, rectifying the discrepancy between 

the 
4
H e abundance and the deuterium and 

7
Li abundances, and yields good agreement with the 

independently determined ηW M AP . The minimal deviation consistent with the data is significant 

at about the 4-σ level; δQ/Q = −0.019 ± 0.005. If the primordial 
4
 He abundance lies towards the 

low end of values in the literature, this deviation is even larger and more statistically significant. 

Taking the light element abundance data at face-value, our result may be interpreted as variation 

of the dimensionless ratio X = ms /ΛQCD of the strange quark mass and strong scale: δX/X = (1.1 

± 0.3) × 10
−3

 . These results provide a strong motivation for a more thorough exploration of the 

potential systematic errors in the light element abundance data. 

Key words: physical constants, high energy physics, Big Bang nucleosynthesis (nuclear 

synthesis), atomic clocks, Grand Unification, Standard Model, quasar spectra, signal processing, 

sensitivity, precision. 
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Introduction 

 

Recently there was an intensive discussion of the possible space-time variation of the fine 

structure constant 

 

α = e
2
/hc at the cosmological scale.  

 

The first evidence for such variation has been reported in [1, 2, 3, 4, 5, 6] from the analysis of the 

astrophysical data. These results are to be compared with the number of experimental up-per 

bounds on this variation obtained from other astrophysical observations (see, e.g. [7, 8, 9]) and 

from the precision laboratory measurements [10, 11, 12]. Recently a number of new laboratory 

tests have been proposed (see, e.g. [13]). The analysis of the microwave back-ground radiation 

can also give some restrictions on time variation of α as suggested in [14, 15, 16]. 

Implementations of the space-time variation of the fine structure constant to the theory of the 

fundamental interactions are discussed e.g. in Refs. [17, 18, 19, 20, 21, 22, 23] (see also 

discussion and references in [3]).  

 

The most straightforward way to look for the variation of is to measure the ratio of some fine 

structure interval to an optical transition frequency, such as ω(np1/2 → np3/2) and ω(n
′
s1/2 → np3/2) 

[37]. This ratio can be roughly estimated as 0.2 α
2
Z

2
, where Z is the nuclear charge [24]. 

Therefore, any difference in this ratio for a laboratory experiment and a measurement for some 

distant astrophysical object can be easily converted into the space-time variation of α. However, 

as it was pointed out in [25], one can gain about an order of magnitude in the sensitivity to the α-

variation by comparing optical transitions for different atoms. In this case the frequency of each 

transition can be expanded in a series in α
2
 : 

  

α0 stands for the laboratory value of the fine structure constant. Note, that Eq.  (1a) corresponds 

to the expansion at α = 0, while Eq.  (1b) — to the expansion at α = α0 . In both cases parameters 

ωi
(2)

 and qi appear due to relativistic corrections. 

 

For a fine structure transition the first coefficient on the right hand side of  (1a) turns to zero, 

while for the optical transitions it does not. Thus, for the case of a fine structure and an optical 

transition one can write: 
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Quite often the coefficients ωi
(2)

 for optical transitions are about an order of magnitude larger 

than corresponding coefficients for the fine structure transitions ωfs
(2)

 (this is because the 

relativistic correction to a ground state electron energy is substantially larger than the spin-orbit 

splitting in an excited state [25, 26]). Therefore, the ratio  (3) is, in general, more sensitive to the 

variation of α than the ratio  (2). It is also important that the signs of coefficients ωi
(2)

 in  (3) can 

vary. For example, for s-p transitions the relativistic corrections are positive while for d-p 

transitions they are negative. This allows to suppress possible systematic errors which ―do not 

know‖ about the signs and magnitude of the relativistic corrections [25]. On the other hand, for 

many cases of interest, the underlying atomic theory is much more complicated for Eq.  (3). In 

particular, the most difficult case corresponds to transitions to highly excited states of a multi-

electron atom, where the spectrum is very dense. And this happens to be a typical situation for 

astrophysical spectra, in particular, for large cosmological red shifts. Corresponding atomic 

calculations have to account very accurately for the electronic correlations, which may affect 

such spectra quite dramatically. 
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TABLE I: Final results for parameters q from Eq.  (1) for Si II, Cr II, Fe II, Ni II, and Zn II. 

Estimated errors are in brackets. 

Ion Transition ω0  (cm−1) q (cm−1 ) 

Si II 2P1
o

/2 → 
2D3/2 55309.3365 520 (30) 

  → 
2S1/2 65500.4492 50 (30) 

Cr II 6S5/2 → 
6P3

o
/2 48398.868 −1360 (150) 

  → 
6P5

o
/2 48491.053 −1280 (150) 

  → 
6P7

o
/2 48632.055 −1110 (150) 

Fe II 6D9/2 → 
6D9

o
/2 38458.9871 1330 (150) 

  → 
6D7

o
/2 38660.0494 1490 (150) 

  → 
6F11

o
/2 41968.0642 1460 (150) 

  → 
6F9

o
/2 42114.8329 1590 (150) 

  → 
6P7

o
/2 42658.2404 1210 (150) 

  → 
4F7

o
/2 62065.528 1100 (300) 

  → 
6P7

o
/2 62171.625 −1300 (300) 

Ni II 2D5/2 → 
2F7

o
/2 57080.373 −700 (250) 

  → 
2D5

o
/2 57420.013 −1400 (250) 

  → 
2F5

o
/2 58493.071 −20 (250) 

Zn II 2S1/2 → 
2P1

o
/2 48481.077 1584 (25) 

  → 
2P3

o
/2 49355.002 2490 (25) 
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The first calculations of the coefficients q from Eq.  (1) for the transitions suitable for 

astronomical and laboratory measurements were done in Refs. [25, 26, 27, 28]. Here we present 

a new and more accurate calculations of the coefficients q for the transitions, which are currently 

used in the analysis of the astrophysical data. A full list of these transitions was given in [3]. We 

have not re-calculated here the lightest and the most-simple atoms Mg and Al, for which the 

previous calculation [25] should be sufficiently accurate and focused on more complicated ions 

Si II, Cr II, Fe II, Ni II, and Zn II. Our final results for them are given in Table I. Note, that here 

we use the single parameter q instead of two parameters q1 and q2 used in the earlier works and q 

≡ ∂ω/∂x|x=0 = q1 + 2q2. Details of the calculations and discussion of the accuracy will be given in 

Sec.  III. Before that we briefly address few theoretical points in Sec. II. 

 

Theories unifying gravity with other interactions suggest that fundamental constants could vary 

in space-time (see, e.g. [1]). Recent evidence of variation of the fine structure constant α in 

quasar absorption spectra [2] elevated interest to the search of variation of α in laboratory 

experiments. Comparing frequencies of different atomic transitions over long period of time is a 

good way to do such search due to extremely high accuracy of measurements achieved for 

certain types of transitions. The best limit on local present-time variation of the fine structure 

constant published so far was obtained by comparing Hg
+
 microwave atomic clock vs hydrogen 

maser [3]. Recently this limit was further improved by more than an order of magnitude in 

comparing cesium and rubidium atomic clocks [4]. There are also many proposals for the search 

of variation of α in atomic optical transitions, some of which were analyzed in our previous 

works (see [5] and references therein). In the present paper we analyze three new proposals 

involving strontium/calcium, dual beam [6], dysprosium atom [5,7] and ytterbium positive ions 

Y b
+
 [8] and Y b

2+
 [9]. We perform relativistic many-body calculations to link variation of α with 

the variation of the frequencies of atomic transitions. Then we use this connection to find out 

what accuracy of measurements is needed to improve current best limit on time variation of the 

fine structure constant. 

 

In the proposal suggested by S. Bergeson strontium-calcium dual beam is to be used to compare 

the frequencies of the 
1
S0 −

3
 P1 clock transitions in these atoms over a long period of time. Ca 

and Sr have similar electron structure. However, due to higher nuclear charge, relativistic effects 

are larger for strontium. If α is changing, corresponding change in frequency of the clock 

transition for Sr would go considerably faster than for Ca. Precise measurements might be able to 

indicate this or, at least, put strong constrain on possible variation of α. Calculations of the 
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relativistic effects for Ca were done in our previous work [5]. In present paper we do similar 

calculations for Sr. 

 

Experiments with ytterbium positive ion have advantages of greater relativistic effects due to 

larger nuclear charge and the convenience of working with two different transitions of the same 

element. There are two transitions in Yb
+
 involving metastable states for which comparison of 

frequencies is considered. One is quadrupole transition 4f 
14

6s 
2
S1/2 − 4f 

14
5d 

2
D5/2 and another is 

octupole transition 4f 
14

6s 
2
S1/2 −4f 

13
6s

2 2
F7/2. The quadrupole transition is basically a s−d 

transition while the octupole one is a f −s transition. According to simple analytical formula 

presented in Ref. [5] relativistic energy shifts for s electrons, and electrons with high total 

momentum j (like d and f electrons) are large but have opposite sign. This means that we should 

expect that two metastable states of Yb
+
 move in opposite directions if α is changing. This brings 

extra enhancement to the sensitivity of the measurements for Yb
+
 to the variation of α. Our 

accurate calculations presented below support these considerations. 

 

The proposal for dysprosium is quite different from what was considered so far. Instead of 

comparing two very stable atomic clock frequencies the authors of this proposal [5] suggest to 

measure very small frequency of the transition between two almost degenerate states of opposite 

parity in dysprosium. The states are 4f 
10

5d6s 
3
[10]10 E = 19797.96cm

−1
 and 4f 

9
5d

2
6s 

9
K10 E = 

19797.96cm
−1

. These states were used before for the search of parity non-conservation in Dy 

[11]. Small energy splitting and different electron structure of these two states lead to very strong 

enhancement of the sensitivity of the frequency of transition 

 

2 
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between the states to variation of α. The enhancement (about eight orders of magnitude) seems 

to be strong enough to overcome the disadvantage of dealing with states which are not very 

narrow. 

 

In the present paper we calculate the values of relativistic energy shifts for Sr, Yb
+
 and Dy and 

discuss what accuracy of measurements is needed to improve current best constrain on local 

time variation of the fine structure constant. 
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Chapter1 Many-Body Theory 

Standard many-body perturbation theory 

The quantum-mechanical treatment of many-electron systems, based on the Schr• odinger 

equation and the Coulomb interaction between the electrons,was developed shortly after the 

advent of quantum mechanics, particularlyby John Slater in the late 1920's and early 1930's 

[214]. Self-consistent-field(SCF) schemes were early developed by Slater, Hartree, Fock and 

others.1  

Perturbative schemes for quantum-mechanical system, based on the Rayleigh-Schr• odinger and 

Brillouin-Wigner schemes, were developed in the 1930's and 1940's, leading to the important 

linked-diagram expansion, introduced by Brueckner [37] and Goldstone [73] in the 1950's, 

primarily for nuclear applications. That scheme was in the 1960's and 1970's also applied to 

electronic systems [100] and extended to degenerate and quasi-degenerate energy levels [31, 

112]. The next step in this development was the introduction of " all-order methods" of coupled-

cluster type, where certain effects are taken to all orders of the perturbation expansion. This 

represents the last and probably major step of the development of a non-relativistic many-body 

perturbation theory (MBPT).2 

The first step towards a relativistic treatment of many-electron systems was taken in the early 

1930's by Gregory Breit [32], extending works made somewhat earlier by J. A. Gaunt [68]. 

Physically, the Gaunt interaction represents the magnetic interaction between the electrons, 

which is a purely relativistic effect. Breit augmented this treatment by including the leading 

retardation effect, due to the fact that the Coulomb interaction is not instantaneous, which is an 

effect of the same order. 

 

A proper relativistic theory should be Lorentz covariant, like the Dirac single-electron theory.3 

The Dirac equation for the individual electrons together with the instantaneous Coulomb and 

Breit interactions between the electrons represent for a many-electron system all effects up to 

order2 H(Hartree atomic units) or 4mec2.4 This procedure, however, is NOT Lorentz covariant, 

and the Breit interaction can only be treated to first-order in perturbation theory, unless 

projection operators are introduced to prevent the intermediate states from falling into the "Dirac 

sea" of negative-energy states, as discussed early by Brown and Ravenhall [36] and later by Joe 

Sucher [222]. The latter approach has been successfully employed for a long time in relativistic 

many-body calculations and is known as the no-virtual-pair approximation (NVPA). A fully 

covariant relativistic many-body theory requires a field-theoretical approach, i.e., the use of 

quantum-electrodynamics (QED). In principle, there is no sharp distinction between relativity 
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and QED, but conventionally we shall refer to effects beyond the no-virtual-pair approximation 

as QED effects. This includes effects of retardation, virtual pairs and radiative effects 

(selfenergy, vacuum polarization, vertex correction). The systematic treatment of these effects 

requires a covariant approach, where the QED effects are included in the wave function. It is the 

main purpose of the present book to formulate the foundations of such a procedure. 

 

Quantum-electrodynamics 

 

Already in the 1930's deviations were observed between the results of precision spectroscopy 

and the Dirac theory for simple atomic systems, primarily the hydrogen atom. Originally, this 

deviation was expected to be due to vacuum polarization, i.e., spontaneous creation of electron-

positron pairs in the vacuum, but this effect turned out to be too small and even of the wrong 

sign. An alternative explanation was the electron self-energy, i.e., the emission and absorption of 

a virtual photon on the same electron another effect that is not included in the Dirac theory. 

Early attempts to calculate this effect, however, were unsuccessful, due to singularities 

(infinities) in the mathematical expressions. 

The first experimental observation of a clear-cut deviation from the Dirac theory was the 

detection in 1947 by Lamb and Retherford of the so-called Lamb shift [111], namely the shift 

between the 2 s and 2 p 1 = 2 levels in atomic hydrogen, levels that are exactly degenerate in the 

Dirac theory [53, 54]. In the same year Hans Bethe was able to explain the shift by a non-

relativistic calculation, eliminating the singularity of the self energy by means of a 

renormalization process[16]. At about the same time Kusch and Foley observed that the 

magnetic g-factor of the free electron deviates slightly but significantly from the Dirac value -2 

[105, 106]. These observations led to the development of the modern form of the quantum-

electrodynamics theory by Feynman, Schwinger, Dyson, Tomanaga and others by which the 

deviations from the Dirac theory could be explained with good accuracy [210, 228, 64, 63, 58].5 

The original theory of QED was applied to free electrons. During the last four decades several 

methods have been developed for numerical calculation of QED effects in bound electronic 

states. The scattering-matrix or S-matrix formulation, originally developed for dealing with the 

scattering of free particles, was made applicable also to bound states by Joe Sucher [220], and 

the numerical procedure was refined in the 1970's particularly by Peter Mohr [146]. During the 

last two decades the method has been extensively used in studies of highly charged ions in order 
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to test the QED theory under extreme conditions, works that have been pioneered by Mohr and 

So (for a review, see ref. [152]). 

The Green's function is one of the most important tools in mathematical physics with 

applications in essentially all branches of physics.6 During the1990's the method was adopted to 

bound-state QED problems by Shabaev et al. [211]. This procedure is referred to as the Two-

times Green's function and has recently been extensively applied to highly-charged ions by the 

St Petersburg group. During the first decade of this century another procedure for numerical 

QED calculations was developed by the Gothenburg atomic theory group, termed the Covariant-

evolution-operator (CEO) method [124], which has been applied to the fine structure and other 

energy-level separations of heliumlike ions. [1.111] 
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Chapter 2 

 

 THEORY  

 

In order to find parameters q = ∂ω/∂x|x=0 in Eq.  (1) we perform atomic calculations for three 

values of x: x− = −1/8, x0 = 0, and x+ = 1/8. That allows us to determine q: q = 4 (ω(x+) − ω(x−)) 

and also estimate the second derivative ∂
2
ω/∂x

2
|x=0. The large value of the latter signals that 

interaction between levels is strong (level pseudo-crossing), and there is a risk of large errors. 

For these cases further analysis was done as described below. 

 

a. Relativistic calculations of multi-electron ions.  

 

In order to accurately account for the dominant relativistic effects we use the Dirac-Hartree-Fock 

approximation as a starting point for all calculations of atomic spectra. Though most of the 

calculations were done for the Coulomb potential, we have also estimated Breit corrections by 

including the magnetic part of the Breit inter-action in the self-consistent field [1.29]. 

 

The ions we are dealing with in this paper have from one to nine electrons in the open shells. For 

one valence electron in Zn II the Dirac-Fock V 
N
 

−1
 approximation already gives rather good 

results. On the next step the core-valence correlations can be accounted for by means of the 

many-body perturbation theory (MBPT). Already the second order MBPT correction allows to 

reproduce the spectrum with the accuracy, better than 1%, which is more than sufficient for our 

current purposes. 

 

Other ions of interest to us have at least three valence electrons. Here the dominant correlation 

correction to transition frequencies corresponds to the valence-valence correlations. This type of 

correlations can be accounted for with configuration interaction (CI) method. If necessary, the 

core-valence correlations can be included within combined CI+MBPT technique [1.30]. The 

latter usually provides an accuracy of the order of 1% or better for the lower part of the spectra 

of atoms and ions with two or three valence electrons [1.30, 31, 32]. However, the accuracy of 

ab initio methods decreases with the number of valence electrons and with excitation energy. 
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Indeed, for a large number of valence electrons and/or sufficiently high excitation energy the 

spectrum becomes dense and the levels with the same exact quantum numbers strongly interact 

with each other. The part of the spectrum of Fe II above 55000 cm
−1

 and, to a somewhat lesser 

extent, the spectrum of Ni II represent this situation. There-fore, for these ions we developed a 

semi-empirical fitting procedure, which is described below. 

 

In order to have additional control of the accuracy of our CI we performed calculations for most 

of the ions with two different computer packages. One package was used earlier in Refs. [30, 32, 

33] and another one was used in Refs. [3, 25, 26, 27, 28, 31]. The former pack-age allows to 

construct flexible basis sets and optimize configuration space, while the latter allows for a larger 

CI space as it works with the block of the Hamiltonian matrix, which corresponds to a particular 

total angular momentum of atom J . When there were no significant difference between two 

calculations, we only give results obtained with the first package. Nevertheless, our final results 

presented in Table  I are based on both calculations. 

 

 

b. Semi-empirical treatment of the strong interaction of levels: pseudo-crossing.  

 

In the nonrelativistic limit α → 0, all multi-electron states are accurately described by the LS-

coupling scheme: Eα→0 = Ep,n,L,S,J , where p = ±1 is the parity and n numerates levels with the 

same p, L,S, and J. For sufficiently small values of α the LS-coupling holds and the energy has the form: 

 

 

 (4) 

 

The first term in the parentheses gives the slope for the centre of the multiplet and the second 

term gives the fine structure. With growing α the multiplets start to overlap and when the levels 

with the same p and J come close, the pseudo-crossing takes place. 

 

Near the pseudo-crossing the slope of the energy curves changes dramatically. If such crossing 
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takes place at x ≈ 0, where x is defined by Eq.  (1), i.e. near the physical value of α, it can cause 

significant uncertainty in the values of parameters q. 

 

Let us first analyze the behavior of the slopes q(x) in the vicinity of the pseudo-crossing in the 

two-level approximation. Consider two levels E1 and E2 which cross at x = xc : 

 

E1 = q1(x − xc ), (5a) 

E2 = q2(x − xc ). (5b) 

 

If the interaction matrix element between these two levels is V , the exact adiabatic levels will be 

 

 (6) 

 

 

It is easy now to calculate the energy derivative in respect to x in terms of the mixing angle φ 

between unperturbed states 1 and 2: 

 

 (7) 

 

 

Note, that at the crossing the angle φ varies from 0 on one side through π/4 in the centre to π/2 

on the other side, which leads to the change of the slope 

 

qa(x) = ∂Ea/∂x from q1 through (q1 + q2 )/2 to q2. The narrow crossings with small V are 

particularly dangerous, as the slopes change very rapidly within the interval x ≈ V /|q1 − q2|.  

Then, even small errors in the position of the crossing point xc , or the value of V  can cause 
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large errors in qa,b.  In this model we assume that non-diagonal term V  = const. 

For the real atom V  ∝ α
2
. However, if the crossing region   x ≪ 1, we can neglect 

the dependence of V  on α. 

 

 

b. Semi-empirical treatment of the strong interaction of levels: multi-level case.  

Eq.  (7) can be easily gener-alized to a multi-level case as it simply gives the slope of a physical 

level a as a weighted average of the mixed levels. Thus, if the level a can be expressed as a 

linear combination of some unperturbed LS-states ψLn ,Sn : 

 

 

    (8) 

 

 

the resultant slope qa is given by: 

 

    (9) 

 

 

Here again we neglect weak dependence of interaction V on x in comparison to strong 

dependence of Cn
2
 on x near crossing points. 

 

 

 

 

 

Eq.  (9) allows to improve ab initio coefficients q if we can find the expansion coefficients Cn in 
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Eq.  (8). That can be done, for example, by fitting g-factors. The magnetic moment operator µ = 

g0(L + 2S) is diagonal in L and S and, therefore, does not mix different LS-states. Thus, in the 

LS-basis the resultant g-factor for the state a has exactly the same form as qa: 

 

   (10) 

 

 

 

If the experimental g-factors are known, one can use Eq.  (10) to find weights Cn
2
 and, then find 

the corrected values of the slopes qa. 

 

Sometimes, the experimental data on g-factors are in-complete. Than, one can still use a 

simplified version of Eqs.  (9) and  (10): 

 

  (11a,b) 

 

C
2
 here is the weight of the dominant LS-level in the experimental one, and the bar means the 

averaging over the admixing levels. Of course, there is some arbitrariness in calculation of 

averages g¯ and q¯. However, the advantage of Eqs.  (11) is that only one experimental g-factor 

is required. 

 

III. DETAILS OF THE CALCULATION AND RESULTS 

 

As we mentioned above, we performed calculations of energy levels for three values of the 

parameter x: x− = −1/8, x0 = 0, and x+ = 1/8. All three calculations were done at exactly same 

level of approximation, to minimize the error caused by the incompleteness of the basis sets and 

configuration sets. From these calculations we found two approximations for q: q− = 8(ω(x0) − 

ω(x−)) and q+ = 8(ω(x+) −ω(x0 )). If there were problems with level identification we performed 
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additional calculation for x = 0.01, where the LS-coupling should be very accurate and 

identification is straitforward. The noticeable difference between q− and q+ signaled the 

possibility of the level crossing. In these cases we applied the semiempirical procedure described 

in Sec.  II to find the corrected values for q; otherwise, we simply took the average: q = (q+ + 

q−)/2. 

 

A. Zn II  

 

Zn II has the ground state configuration [1s
2
 . . . 3d

10
]4s 

 

and we are interested in the 4s → 4pj transitions. As the theory here is much simpler than for 

other ions, we  

 

TABLE II: Transition frequencies and parameters q for Zn II (in cm
−1

 ). Calculations were done 

in four different ap-proximations: Dirac-Hartree-Fock-Coulomb (DHFC), Dirac-Hartree-Fock-

Coulomb-Breit (DHFCB), Brueckner-Coulomb (BC), and Brueckner-Coulomb-Breit (BCB). 

 

Transition Exper. DHFC  DHFCB BC BCB 

  transition frequencies   

4s
1/2 → 4p1/2  48481.077 44610.1 44608.1 48391.2 48389.4 

 
→

 
4p

3/2 49355.002 45346.9 45330.0 49263.8 49244.6 

  parameters q = (q+ + q−)/2  

4s
1/2 → 4p1/2  1362 1359 1594 1590 

 
→

 
4p

3/2  2129 2109 2500 2479 

       

 

used Zn II to study the importance of the core-valence correlation correction and Breit correction 

to the slopes q. The former correction was calculated in Brueckner approximation: 

 

  (12) 
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with the self-energy operator Σ(E) calculated in the second order of MBPT (the perturbation 

here is the difference between the exact and Dirac-Hartree-Fock Hamiltonians, V = H − HDHF). 

The HDHF was calculated with the magnetic part of the Breit operator included self-consistently. 

The retardation part of the Breit operator is known to be significantly smaller  [29] and we 

completely neglected it here. 

 

B. Si II 

Si II has three valence electrons and the ground state configuration [1s
2
 . . . 2p

6
]3s

2
3p. Excited 

configurations of interest are 3s3p
2
 and 3s

2
4s. We made the CI calculation in the Coulomb 

approximation on the basis set, which included 1s − 8s, 2p − 8p, 3d − 8d, and 4f, 5f orbitals, 

which we denote as the basis set [8spd5f]. Note, that we use virtual orbitals, which are localized 

within the atom [34], rather than Dirac-Fock ones. This pro-vides fast convergence. CI included 

all single-double (SD) and partly triple excitations from three valence configurations listed 

above. The results of these calculations are given in Table  III. 

 

TABLE III: Transition frequencies ω from the ground state 
2
P1

o
/2, fine structure splitting FS , and 

parameters q± for Si II (in cm
−1

 ). 

 

 Experiment  [35]  Theory   

 ω FS ω FS q− q+ 

2
P3

o
/2 287 287 293 293 295 291 

4
P1/2 44080  41643  453 451 

4
P3/2 44191 111 41754 111 565 564 

4
P5/2 44364 174 41935 181 746 744 

2
D3/2 55304  54655  509 507 

2
D5/2 55320 16 54675 20 530 530 

2
S1/2 65495  65148  40 39 

       

 

Like in Zn, the left and write derivatives q− and q+ are close to each other, and all levels with 

equal exact quantum numbers are well separated. The astrophysical data exist for the levels 
2
S1/2 

and 
2
D5/2. The former corresponds to the 3p → 4s, while the latter corresponds to the 3s → 3p 

transition and has much larger positive q. 

(HDHF =  EΨ, (12)  
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That is in agreement with the fact that relativistic corrections to the energy usually decrease with 

the principle quantum number n and with the orbital quantum number l. Therefore, for the ns → 

np transition one should expect large and positive q, while for np → (n + 1)s, there should be 

large cancellation of relativistic corrections to upper and to lower levels, resulting in smaller q 

(see discussion in [25, 26]). The dominant correction to our results should be from the core-

valence correlations. In the recent calculations of Mg, which has the same core as Si II, the core-

valence corrections to transition frequencies were found to be about 4% [33, 36]. We 

conservatively estimate corresponding correction to q to be 6% of the larger q, i.e. 30 cm
−1

 

 

C. Cr II 

Cr II has the ground state configuration [1s
2
 . . . 3p

6
]3d

5
 with five valence electrons. The 

astrophysical data cor-respond to the 3d → 4p transition, for which one may expect negative 

value of q. CI calculations here are much more complicated, than for Si II. There is strong relax-

ation of the 3d shell in the discussed transition, which requires more basic d-orbitals. Therefore, 

we used the [6sp9d6f] basis set. In CI we included only single and double (SD) excitations. 

Some of the triple, quadruple, and octuple excitations were accounted for by means of the 

second order perturbation theory. It was found that corresponding corrections to transition 

frequencies were of the order of few percent, and were even smaller for parameters q. In general, 

these corrections did not improve the agreement with the experiment, so we present only CI 

results in Table  IV. 

 

As we mentioned above, there is strong relaxation of the 3d-shell in the 3d → 4p transition. We 

were not able to saturate CI space and completely account for this relaxation. Because of that, 

we estimate the error for q here to be close to 10%. 

 

 

 

 

 

 

 



23 
 

 

 

 

 

TABLE IV: Transition frequencies ω from the ground state 
6
S5/2, fine structure splitting FS, and 

parameters q for Cr II (in cm
−1

 ). CI single-double approximation was used for the Coulomb-

Breit interaction. 

 

 Experiment  Theory  

 ω FS ω FS q+ 

6
D5/2   12148  13123  −2314 

6
D7/2 12304 156 13289 165 −2153 

6
F1

o
/2 46824  47163  −1798 

6
F3

o
/2 46906 82 47244 81 −1715 

6
F5

o
/2 47041 135 47378 134 −1579 

6
F7

o
/2 47228 187 47565 187 −1387 

6
F9

o
/2 47465 237 47803 238 −1148 

6
F11

o
/2 47752 287 48091 288 −862 

6
P1

o
/2 48399  48684  −1364 

6
P2

o
/2 48491 92 48790 106 −1278 

6
P3

o
/2 48632 141 48947 157 −1108 

      

 

 

We have seen before for Zn II and Si II, that in the absence of level-crossing the difference 

between q+ and q− is smaller than other theoretical uncertainties. In Cr II there are no close 

levels which may interact with each other, so in the calculation presented in Table  IV we 

determined only the right derivative q+ . In calculations with different basis sets we checked that 

the difference between q+ and q− is much smaller than the given above theoretical error (see 

Table I). 

 

 

 

 



24 
 

D. Fe II  

 

Fe II ion has 7 valence electrons in configuration 3d
6
4s and represents the most complicated 

case. The astrophysical data includes 5 lines in the band 38000 cm
−1

– 43000 cm
−1

and two lines 

with the frequency close to 62000 cm
−1

. The first band consists of three close, but separated 

multiplets with a regular fine structure split-tings. The 62000 cm
−1

 band is completely different 

as the multiplets here strongly overlap and fine structure inter-vals are irregular [35]. 

Characteristic distance between the levels with identical exact quantum numbers is few hundred 

cm
−1

 , which is comparable to the fine structure splittings. This means that the levels strongly 

interact and even their identification may be a problem. 

 

In fact, in Moore Tables [1.35] one of the multiplets of interest, namely y 
6
P 

o
 , is erroneously 

assign to the con-figuration 3d
6
(
7
S)4p. It is an obvious misprint, as there is no term 

7
S for 

configuration 3d
6
. This term appears, however, in the configuration 3d

5
 and the correct assign-

ment of this multiplet should be 3d
5
(
7
S)4s4p. This as-signment is in agreement with our 

calculations and with the experimental g-factor of the level with J = 7/2. We checked that all 

close levels of the configuration 3d
6
4p have significantly smaller g-factors. 

 

This reassignment has dramatic consequences in terms of the corresponding parameter q as 

configurations 3d
6
4p (4s − 4p transition from the ground state) and 3d

5
4s4p (3d − 4p transition) 

move in the opposite directions from the ground state configuration 3d
6
4s when x is changed. It 

also causes a number of pseudo-crossings to occur right in the vicinity of x = 0 (see Fig. 1). 
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0 0.2 0.4 0.6 0.8 1 1.2 

FIG. 1: Examples of typical interaction of levels in the upper band of Fe II. Levels are shown in 

arbitrary units as function of (α/α0 )
2
 = x + 1. Levels of configuration 3d

6
 4p have similar slopes 

and strongly interact with each other. That causes wide pseudo-crossings, similar to one shown 

on the left side of the plot. The level 
6
P7

o
/2 of the configuration 3d

5
 4s4p moves in the opposite 

direction. A series of sharp pseudo-crossings takes place near the physical value of α, marked by 

a vertical dotted line. 

 

CI calculations for Fe II were done on the basis set [6spdf] in the SD approximation (see Table 

V). Triple excitations were included within second order perturbation theory and corresponding 

corrections were found to be relatively small. One can see from Table  V that for the lower band 

both frequencies and g-factors are reproduced rather accurately. 

 

The first anomaly takes place at 44000 cm
−1

, where the levels 
4
D7

o
/2 and 

4
F7

o
/2 appear in the 

reverse order. Theoretical g-factors are also much further from LS values (1.429 and 1.238). 

That means that theoretical levels are at pseudo-crossing, while experimental levels already 

passed it. Indeed, calculations for x = 1/8 show that the right order of levels is restored, though 

the g-factors are still too far from LS values. 

 

The second anomaly corresponds to the band above 60000 cm
−1

. Here the order of calculated 

levels differs from that of the experimental ones. Note, that for this band only levels of negative 

parity with J = 7/2 are given in Table V. Thus, all of them can interact with each other. Let us 

estimate, how this interaction can affect the slopes q. 
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TABLE V: Transition frequencies ω from the ground state 
6
D9/2 , g-factors, and parameters q± 

for Fe II (in cm
−1

 ). 

 

 Experiment  Theory   

 ω g ω gg(LS) q− q+ 

6
D9

o
/2 38459 1.542 38352  1.556 1359 1363 

6
D7

o
/2 38660 1.584 38554 1.586 1.587 1522 1510 

6
F11

o
/2 41968  41864  1.455 1496 1508 

6
F9

o
/2 42115 1.43 42012  1.434 1615 1631 

6
F7

o
/2 42237 1.399 42141 1.396 1.397 1738 1737 

6
P7

o
/2 42658 1.702 42715 1.709 1.714 1241 1261 

4
D7

o
/2 44447 1.40 44600 1.345 1.429 1791 1837 

4
F7

o
/2 44754 1.29 44386 1.327 1.238 1608 1601 

8
P7

o
/2 54490  54914 1.936 1.937 −2084 −2086 

4
G7

o
/2 60957 0.969 63624 0.978 0.984 1640 1640 

4
H7

o
/2 61157 0.720 63498 0.703 0.667 1296 1247 

4
D7

o
/2 61726 1.411 66145 1.398 1.429 1194 1240 

4
F7

o
/2 62066 1.198 65528 1.252 1.238 1071 1052 

6
P7

o
/2 62172 1.68 65750 1.713 1.714 −1524 −1514 

2
G7

o
/2 62323  64798 0.882 0.889 1622 1605 

        

 

Five levels from this band belong to configuration 3d
6
4p and have close slopes with the average 

q¯ = 1360 cm
−1

. Only the level 
4
F7

o
/2 has the slope, which is 300 cm

−1
 smaller, than the average. 

The remaining level 
6
P7

o
/2 belongs to configuration 3d

5
4s4p and has the slope of the opposite 

sign q1 = −1519 cm
−1

. Its absolute value is 500 cm
−1

 smaller, than for the level 
8
P7

o
/2 of the same 
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configuration 3d
5
4s4p. That suggests that the levels 

4
F7

o
/2 and 

6
P7

o
/2 strongly interact with each 

other. This is also in agreement with the fact, that these levels are the closest neighbors both 

experimentally and theoretically and that they cross somewhere between x− and x. There is also 

strong interaction be-tween the levels 
2
G

o
7/2, 

4
F7

o
/2, and 

4
D7

o
/2. That can be seen if one calculates 

the scalar products (overlaps) be-tween corresponding wave functions for different values of x, 

such as: hi(x−)|k(x+ )i. For weekly interacting levels hi(x−)|k(x0 )i ≈ hi(x−)|k(x+ )i ≈ δi,k , so large 

non-diagonal matrix elements signal, that corresponding levels interact. 

 

Interaction of levels 
2
G

o
7/2 , 

4
F7

o
/2 , and 

4
D7

o
/2 does not affect the slopes q as strongly, as the 

interaction of 
4
F7

o
/2 and 

6
P7

o
/2 , so we can account for the former in a less accurate way, but it is 

important to include the latter as accurately as possible. 

 

The level 
6
P7

o
/2 interacts with some linear combination of levels 

2
G

o
7/2, 

4
F7

o
/2 , and 

4
D7

o
/2. The 

slopes and g-factors of the latter are relatively close to each other, so we can simply take the 

average for all three: 

 

g¯ = 1.185;   q¯ = 1297. (13) 

 

Now we can use experimental g-factor of the state 
6
P7

o
/2 

58000    

56000    

54000    

52000    

50000    

0.6 0.8 1.0 1.2 

 

FIG. 2: Dependence of the odd levels of Ni II on (α/α0 )
2
 = x + 1. Solid lines correspond to J = 

5/2 and dashed lines to J = 7/2. The experimental positions of the lines are shown as short 
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horizontal lines and are all shifted by 1000 cm
−1

 . The order of levels from bottom up: 
4
D7

o
/2,5/2 , 

4
G

o
7/2,5/2 , 

4
F7

o
/2,5/2 , 

2
G

o
7/2 , 

2
F5

o
/2 , 

2
D5

o
/2 , and 

2
F5

o
/2 . and Eq.  (11) to determine the mixing: 

 

 

   (14) 

 

 

  (15) 

 

 

Eq.  (15) corresponds to the correction δq = +177.  

 

Eq. (15) corresponds to the correction _q = +177. Therefore, for the closest level 4Fo 7/2 this model gives 
an estimate: 
 
 

  (16) 
 

 

Eqs.  (15) and  (16) show that correction for the mixing is not very large. That corresponds to the 

fact that experimental g-factor of the level 
6
P7

o
/2 is significantly larger than any g-factors of the 

levels of the configuration 3d
6
4p. Thus, the interaction for this level is relatively small. On the 

contrary, the levels of the configuration 3d
6
4p strongly interact with each other, but 

corresponding changes of the slopes are also relatively small (since the q values for these 

strongly interacting levels are approximately the same). 

 

We estimate the accuracy of our calculations for the lower band of Fe II to be about 150 cm
−1

, 

and approximately 300 cm
−1

 for the values  (15) and  (16). 

 

E. Ni II  
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Ni II has the ground state configuration 3d
9
. The spectrum is somewhat simpler, than for Fe II. 

There are als0 pseudo-crossings here, but they either lie far from x = 0, or are rather wide. That 

makes their treatment slightly easier. Nevertheless, our results significantly differ from previous 

calculations [28]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE VI: Transition frequencies ω from the ground state, g-factors, and parameters q± for Ni 

II (in cm
−1

). 

 Experiment  Theory   

 ω g ω gg(LS) q− q+ 

2
D3/2 1507  1579  0.800 1559 1552 

4
D7

o
/2 51558 1.420 50415 1.423 1.429  −2405            −2425 

 4
D5

o
/2 52739 1.356 51640 1.360 1.371 −1217             −1245 

4
G7

o
/2 54263 1.02 53150 1.016 0.984  −1334             −1387 

4
G5

o
/2 55019 0.616 53953 0.617 0.571 −370 −418 

4
F7

o
/2 55418 1.184 54323 1.183 1.238  −1104              −1124 

4
F5

o
/2 56075 0.985 55063 0.986 1.029 −332 −334 

2
G7

o
/2 56372 0.940 55284 0.933 0.889 −60 −188 

2
F7

o
/2 57080 1.154 56067 1.128 1.143 −911 −713 
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2
D5

o
/2 57420 1.116 56520 1.108 1.200  −1419             −1438 

2
F5

o
/2 58493 0.946 57589 0.959 0.857 −35 −5 

        

 

CI calculations were done for the Coulomb potential and included SD and partly triple 

excitations on the basis set [5spdf]. We calculated 5 lower odd levels with 

J = 5/2 and 5 with J = 7/2 for x−, x0, and x+ , and used parabolic extrapolation for the interval 

−0.4 ≤ x ≤ +0.3 (see Fig. 2). It is seen that the theory accurately repro-duce relative positions of 

all levels. An overall agreement between the theory and the experiment becomes close to perfect 

if all experimental levels are shifted by 1000 cm
−1

 down, as it is done in Fig. 2. Note, that this 

shift constitutes only 2% of the average transition frequency. 

 

Calculated g-factors are generally in agreement with the experiment [1.35] and noticeably 

different from the pure LS-values (see Table VI). However, for the level 
2
F7

o
/2 theoretical g-

factor is smaller than the LS value, while experimental one is larger. There are no nearby levels 

who may mix to this one and move g-factor closer to experiment. On the other hand, the 

difference with experiment is only 2% and may be within experimental accuracy. 

 

Fig.  2 shows that the levels 
2
G

o
7/2 and 

2
F7

o
/2 cross at x ≈ 0.3 and they already strongly interact at 

x = 0. Theoretical splitting for these levels is 10% larger than experimental one. Thus, they are 

in fact even closer to the crossing point than is predicted by the theory. The experimental 

splitting is equal to the theoretical one for larger value of α corresponding to x ≈ 0.15. At x = 

0.15 the slopes of these levels are −265 and −590, and for x = 0 they are −124 and −812 

correspondingly. Note, that the sum of the slopes at x = 0.15 differs by 80 cm
−1

 from the sum at 

x = 0. According to Eq.  (7) for a two-level system the sum is constant. This means that these 

two levels repel from the lower lying level 
4
F7

o
/2 . Taking this analysis into account we suggest 

an average between x = 0 and x = 0.15 as our final value: q(
2
F7

o
/2 ) = −700(250). 
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Chapter 3 

 

I. CALCULATIONS OF ENERGIES 

 

We use relativistic Hartree-Fock (RHF) and configuration interaction (CI) methods to do the 

calculations. 

 

RHF Hamiltonian is used to generate a set of single-electron orbitals. We use a form of singe-

electron wave function which explicitly depends on the fine structure constant α.

Then the RHF equation for ψ(r)n  has the following form (in atomic units) 

 

The value of relativistic effects is studied by varying the value of α in (2). In particular, non-
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relativistic limit corresponds to α = 0. 

 

In the CI calculations we use approach similar to what was first developed in Ref. [2.12]. 

Electrons occupying open shells are considered as valence electrons and all other are core 

electrons. Correlations between valence electrons are treated within the CI method while 

correlations between valence and core electrons are included by means of the many-body 

perturbation theory.  

 

It describes correlations between a particular valence electron and core electrons (see Ref. [2.12] 

for details). Note that in contrast with Ref. [2.12] we don‘t include in present work the Σ2 

operator, which is a two-electron operator describing different type of correlations between 

valence and core electrons. Terms with Σ2 can be considered as screening of Coulomb 

interaction between valence electrons by core electrons. These terms are less important than 

those with Σ, but much more time consuming in calculations. We either neglect them or simulate 

their effect by introducing screening factors. 

    



34 
 

We are now going to discuss the specifics of the calculations for each atom/ion. Apart from the 

states of interest we also calculate energies of the other states of the same con-figurations to 

ensure that the accuracy is systematically good. We also calculate magnetic g-factors to ensure 

correct identification of states. This is particularly important for dysprosium. 

 

 

A. Strontium 

 

Strontium in its ground state is a closed-shell atom. It has two 5s-electrons on its outermost 

shell and we need to consider energy intervals between 
1
S0 ground state and states of the 5s5p 

configuration where the 
3
P1 metastable state is of most interest. The RHF calculations for Sr 

were done in V 
N
 approximation, for a closed-shell atom in its ground state. For the CI 

calculations we considered Sr as an atom with two valence electrons and followed the similar 

calculations for Ba [2.13]. Basis states for the CI+MBPT method were calculated using the B-

spline technique [2.14] with 40 B-splines in a cavity of radius R = 40aB . 

ˆ 

The same basis functions were used to calculate Σ1 and for the CI calculations. Thirteen lowest 

states above core in each of the s1/2, p1/2, p3/2, d3/2 and d5/2 waves were used to construct two-

electron wave function for both 5s
2
 and 5s5p configurations. Large number of basis functions is 

needed mostly for adequate description of the 5s5p configuration. This is because the V 
N
 

approximation doesn‘t provide us with a good 5p single-electron state. Also, the 5s single-

electron state in the 5s5p configuration is different from the 5s state in the 5s
2
 configuration for 

which Hartree-Fock calculations were done. However, with thirteen states in each wave the 

saturation of the basis was clearly achieved and adding more states to the basis didn‘t change the 

energy. Two-electron basis states for the CI calculations were obtained by distributing valence 

electrons over 65 basis states (13 × 5) in all possible ways with a restriction of fixed parity and 

total momentum. 

 

The results are presented in Table I. As one can see the accuracy for the state of the interest 
3
P1 

is better than 1% while accuracy for other states is also good. 
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B. Ytterbium 

 

The ground state of ytterbium positive ion is 4f 
14

6s 
2
S1/2 and we need to consider transitions into 

the 4f 
14

5d 
2
D5/2 and 4f 

13
6s

2 2
F7/2 states. Therefore it is convenient to do the RHF calculations in 

the V 
N
 
−1

 approximation, for the Yb
2+

 ion with the 4f 
14

 closed-shell configuration. The 6s, 5d 

and other basis states for the CI method are calculated then in the field of frozen closed-shell 

core of Yb
2+

. Then, in the CI calculations, we need to consider all 4f electrons as valence ones 

since one of the transitions of the interest involves excitation from the 4f subshell. So, the total 

number of valence electrons in present CI calculations is fifteen. This is very different from our 

previous calculations for Yb
+
 [5] in which the 4f 

13
6s

2 2
F7/2 state was not considered and we were 

able to treat ytterbium ion as a system with one external electron above closed shells. 

 

Our final set of single-electron states for the CI calculations consisted of 4f5/2, 4f7/2, 6s1/2, 5d3/2, 

5d5/2 and few more s and f states above 4f and 6s. Note that in contrast with Sr we don‘t need 

many basis functions here because all our single-electron wave functions correspond to the Yb
+
 . 

This makes initial approximation to be very good and leads to fast convergence of the CI 

calculations with respect to the basis set used. 

ˆ 

in calculations for Yb 

+ 

.  In a case of many valence electrons 

 

We also don‘t include Σ1   

(fifteen for Yb
+
 ) correlations are dominated by correlations between them which are taken into 

account accurately via the CI technique. Correlations between valence electrons and core 

electrons mostly manifest themselves via screening of the Coulomb interaction between valence 

electrons. We take this effect into account semi-empirically, by introducing screening factors fk . 

Namely, we multiply every Coulomb integral of the multi-polarity k by a numerical factor fk 

which is chosen to fit the energies. It turns out that good fit for Yb
+
 is achieved 

with f2  = 0.8 and fk  = 1 for all other k. 

 

Many-electron basis states for the CI calculations were obtained by allowing all possible single 

and double excitations from the base configuration with the restriction of fixed parity and total 

momentum. 

 

Results for energies of Yb
+
 are presented in Table I. The theoretical accuracy for energies as 
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compared to the experiment is 2- 3% for the states of interest and is not worse than 5% for other 

states. 
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C. Dysprosium 

 

Dysprosium atom is the most difficult for calculations because of its complicated electron 

structure. Ground state configuration of Dy is 4f 
10

6s
2
 which means that there is no realistic RHF 

approximation which corresponds to a closed-shell system. We do the RHF calculations for Dy 

in the V 
N
 approximation with an open-shell version of the RHF method. Contribution of the 4f 

electrons into the RHF potential is calculated as for a closed shell and then multiplied by a 

numerical factor to take into account its fractional occupancy. This factor is 10/14 when 

interaction of the 4f electrons with other core electrons is considered and 9/13 when interaction 

of a 4f electron with other 4f electrons is considered. When convergence is achieved we have the 

4f and 6s basis states for the CI calculations. To calculate other states of valence electrons we 

remove one 6s electron, freeze all RHF orbitals, including 4f and 6s and calculate the 6p1/2, 6p3/2, 

5d3/2, 5d5/2 and few more d-states above 5d in the field of frozen RHF core. 

 

In the CI calculations states below 4f are considered as core states and all other as valence states. 

Total number of valence electrons is therefore twelve. As for the case of 

 ˆ 

and use screening factors as fitting parameters to improve agreement 

 

Yb we neglect Σ1  

with experiment. It turns out that best fit for the 4f 
10

6s6p configuration is achieved with f1 = 0.7 

and fk = 1 for all other k. No fitting was used for other configurations. 

 

To calculate states of the 4f 
10

6s
2
, 4f 

10
6s6p and 4f 

10
6s5d configurations we use the 4f5/2, 4f7/2, 

6s1/2, 6p1/2, 6p3/2, 5d3/2 and 5d5/2 single-electron basis functions and all possible configurations 

which can be obtained from these basis functions by exciting of one or two electrons from the 

base configuration. Same approach doesn‘t work for the 4f 
9
5d

2
6s configuration because of huge 

number of many-electron basis states generated this way and as a consequence, the CI matrix is 

of so large size that it could not be handled by our computers. On the other hand test calculations 

with pairs of configurations showed that mixing of our state of interest with other configurations 

is small and can be neglected. We do need however to include mixing with the 4f 
9
5d6d6s, 4f 

9
5d7d6s and 4f 

9
6d

2
6s configurations. This is because our basis 5d state corresponds rather to the 

4f 
10

5d6s configuration and extra d-states are needed to correct it. 

 

The result are presented in Table I. Note that they are considerably better than in our previous 

calculations [2.15]. This is because of better basis and more complete CI treatment.



38 
 

III. FREQUENCY SHIFT: RESULTS AND DISCUSSIONS 

 

In the vicinity of the physical value of the fine structure constant (α = α0) frequency (ω) of an 

atomic transition can be presented in a form 

 

ω = ω0 + qx, (5) 

 

where x = (α
2
/α0

2
) − 1, ω0 is the experimental value of the frequency and q is a coefficient which 

determines the frequency dependence on the variation of α.  

 

The results for coefficients q are presented in Table II. Note that we have included in the Table 

the results of our old calculations for Yb
+
 . These calculations were done in a very different way, 

assuming that Yb
+
 is an atom with one external electron above closed shells. Comparison of the 

results obtained by different methods gives estimate of the accuracy of calculations. 

 

Search for the time variation of the fine structure constant can be conducted by comparing two 

frequencies of atomic transitions over long period of time.  

 

Current best laboratory limit on the time variation of α is α/α˙ < 10
−15

yr
−1

  [4]. 

 

In the first experiment considered in this paper a dual calcium-strontium beam is to be used to 

compare the frequencies of the 
1
S0 −

3
 P1 transitions in both atoms. Substituting ω1 = 15210cm

−1
, 

q1 = 230cm
−1

 for Ca [5], ω2 = 14504cm
−1

, q2 = 667cm
−1

 for Sr (Tables I,II) and α/α˙ = 10
−15

yr
−1

 

we get are to be compared. 

 

Δ(t)(Yb
+
) = 6.1 × 10

−15
yr

−1
. 

 
 

Note that the width of 
3
P1 state in Sr may be a problem in this case. In the case of Yb

 
frequencies 

of the 
2
S1/2 −

2
 D5/2 and 

2
S1/2 −

2
 F7/2 Substituting the numbers we get (9) 

Note two orders of magnitude improvement in the magnitude in comparison with the Sr-Ca dual 

beam experiment. 
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We have also calculated q-coefficient for 4f 
14 1

S0 - 4f 
13

5d 
3
P0 (ω = 45276 cm

−1
) transition from 

YbIII ground state. This was motivated by the proposed measurements [9] of α-variation using 

comparison of 
1
S0 - 

3
P0 transition frequencies in In

+
, Tl

+
 and odd isotope of Yb

++
. The different 

signs and magnitudes of relativistic corrections in In
+
 (q= 4414 cm

−1
), Tl

+
 (q=19745 cm

−1
) and 

Yb
++

 (q= -27800 cm
−1

) provide an excellent control of systematic errors since systematic errors 

are not correlated with signs and magnitudes of the frequency shifts qx, where x = (α
2
/α0

2
) − 1. 

The same idea (combination of anchors, positive shifters and negative shifters) has been used to 

control systematic errors in Ref. [2.2]. 

 

In our view, a very interesting possibility is that for dysprosium. Instead of comparing 

frequencies of different transitions one should measure the energy difference between two very 

close states of opposite parity. The corresponding q-coefficient is q = 6008 + 23708 = 

29716cm
−1

 (see Table II). The frequency of this transition ranges from few MHz to few GHz 

depending on isotopes and hfs components used. If we take, e.g. ω = 3.1MHz [2.10] we get 

 

 

Δ(t)(Dy) = 5.7 × 10
8
( 

α˙ 

). (11) 

 

  

 α0   

 

This is an eight orders of magnitude enhancement in the relative value of the effect compared to 

atomic clock transitions! Substituting α/α˙ = 10
−15

yr
−1

 we get 

 

Δ(t)(Dy) = 5.7 × 10
−7

yr
−1

. (12) 

 

This means that to improve current best limit on local time variation of α the frequency of this 

transition in Dy should be measured to the accuracy of about 10
−7

 over about a year time 

interval. This seems to be feasible [2.7]. 

 

 

 

 

 



40 
 

.
)()(

)()(
1

)( ~















 


 jlmn

jlmn

njlm nrgi

nrf

r
r


    (2.1) 

,0)()](2[)()(
^

2'  rgVrf
r

rf nHFnn
n

n 


 

,0)()()()(
^

'  rfVrg
r

rg nHFnn
n

n 


     (2.2) 

.
2

^

1

^





ji ij

N

j

i

CI

r

e
hH     (2.3) 

^
^

1

2
2

^

.)1(  core

i

i V
r

Ze
mcpch        (2.4) 

,
0

qx  (2.5) 

 

,1)/( 2

0

2  x  

),(4   q        (2.6) 

).()(
2

.

2

1

.

1









 t         (2.7) 

.
22

)(
0

.

2

2

1

1



































qq
t   (2.8) 

 

 

 

 



41 
 

Chapter 4 

 

The possibility that the fundamental constants vary is suggested by theories unifying gravity with 

other interactions (see, e.g. [3.1, 2, 3] and review [3.4]). The analysis of quasar absorption spectra 

by means of the many-multiplet method reveals anomalies which can be interpreted in terms of 

varying fine structure constant α [3.5, 6, 7]. The first indication that α might have been smaller at 

early epoch came from the analysis of magnesium and iron lines [3.5, 6]. Later inclusion of other 

lines belonging to many different atoms and ions (Si, Cr, Ni, Zn, etc.) as well as many samples of 

data from differ-ent gas clouds not only confirmed the initial claim, but made it even stronger 

[3.7]. However, there are some recent works in which a similar analysis indicates no variation of 

α in quasar absorption spectra [3.8, 9]. These works use the same many-multiplet method and the 

results of our calculations of the relativistic effects in atoms, but analyze different samples of data 

from a different telescope. It is important to include as much data as possible into the analysis to 

resolve the differences, and to verify or discard the claim of a varying fine structure constant. 

 

It is natural to analyze fine structure intervals in the search of variation of α. Indeed, initial 

searches of variation of α in quasar absorption spectra were based on alkali-doublet lines (alkali-

doublet method) [3.10, 11, 12] and on the fine structure of O III [3.13]. However, all of the 

present evidence for varying fine structure constant has come from the analysis of the E1-

transition frequencies (many-multiplet method) rather than fine structure intervals. These 

frequencies are about an order of magnitude more sensitive to the variation of α [3.6]. However, 

the corresponding analysis is much more complicated. One needs to perform accurate ab initio 

calculations of the atomic structure to reveal the dependence of transition frequencies on the fine 

structure constant. We have done such calculations for many atoms and ions in our previous 

works [3.14, 15]. In the present work we do similar calculations for some other atoms and ions for 

which data on quasar absorption spectra are available [3.16], and for which corresponding 

calculations have not previously been done. 

 

We use the relativistic Hartree-Fock (RHF) method as a starting point of our calculations. 

Correlations are included by means of configuration-interaction (CI) method for many valence 

electron atoms, or by the many-body perturbation theory (MBPT) and Brueckner-orbital method 

for single valence electron atoms. The dependence of the frequencies on α is revealed by varying 

in computer codes.  
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The results are presented in the form  

ω = 

ω0 + 

qx, 

(

1

) 

 

where x = (α
2
 /α

2
0) − 1, α0 is the laboratory value of the fine structure constant, ω and ω0 are the 

frequencies of the transition in quasar absorption spectra and in the laboratory, respectively, and q 

is the relativistic energy shift that comes from the calculations. Comparing the laboratory 

frequencies, ω0, with those measured in the quasar absorption spectra, ω, allows one to obtain the 

value of α billions of years ago. 

 

The method of calculations is described in detail in our early works [3.14, 15]. Here we only 

discuss the details specific for current calculations. 

 

Some atoms and ions considered in the present work represent open-shell (many valence electron) 

systems. Therefore, the Hartree-Fock procedure needs to be further specified. The natural choice 

is to remove all open-shell electrons and start the Hartree-Fock calculations for the closed-shell 

core. However, this usually leads to poor convergence of the subsequent CI method. Better 

convergence can be achieved using the so called V 
N
 
−
 
1
 approximation in which only one valence 

electron is removed. Since we calculate not only the ground state but also ex-cited states of 

different configurations, it is convenient to remove the electron which changes its state in the 

transition. Single-electron basis states for valence electrons are calculated in the V 
N
 
−1

 potential 

of the frozen-core. 

 

The V 
N
 

−1
 potential corresponds to an open-shell sys-tem. We include the contribution of the 

open shells into the Hartree-Fock potential as if they were totally filled and then multiply them by 

a weighting coefficient. Note that this procedure must not destroy the cancellation of the self-

action (we would like to remind the reader that there is exact cancellation between direct and 

exchange 
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self-action in the Hartree-Fock equations for the closed-shell systems). 

 

For the CI calculations we use B-splined single-electron basis set similar to those developed by 

Johnson et al [3.17, 18, 19]. The main difference is that we use the open-shell RHF Hamiltonian 

described above to calculate the B-splined states. 

 

There are two major sources of inaccuracy in the stan-dard CI calculations. One is incompleteness 

of the basis set and another is core-valence correlations. We use a fitting procedure to model both 

effects. We add an extra term into a single-electron part of the Hamiltonian for the valence 

electrons: 

αc  

U
 
(r) =

 
−

2 (r4 + a4) 
.
 (3.2) 

 

Here αc is the polarizability of the atomic core and a is a cut-off parameter that is introduced to 

remove the singularity at r = 0. We use a = ab (Bohr radius) and treat αc as a fitting parameter. The 

values of αc for each partial wave (s, p, d) are chosen to fit the experimental energy levels of the 

many-electron atom. 

 

The term  (3.2) describes polarization of the atomic core by valence electrons. It can be 

considered as a semi-empirical approximation to the correlation interaction of a particular valence 

electron with the core. It also allows us to improve the convergence of the CI calculations by 

modifying the single-electron basis states. Our calculations for rare-earth ions [3.20, 21] have 

demonstrated that using this term allows one to obtain good accuracy of calculations with the 

minimum number of single-electron basis states (one in each partial wave in the cited works). 

 

Below we present the details and results of calculations for the atoms and ions considered. All 

transition frequencies are presented with respect to the ground state. Therefore we use the term 

―energy levels‖ instead. If a transition between excited states is needed, the corresponding 

relativistic energy shift q is the difference be-tween the level shifts (q2→1 = q2 − q1). 
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a. Manganese (Z = 25): The ground state of Mn
+
 is 3d

5
4s 

7
 S3 and we need to consider transitions 

into the 3d
4
4s4p configuration. Earlier we also considered transitions to the states of the 3d

5
4p 

configuration [3.14]. Since in the present work we use different basis set, we have repeated 

calculations for this configuration in order to check their accuracy. 

 

The RHF calculations are done in the V 
N
 
−
 
1
 approximation with the 3d

5
 configuration of external 

electrons. The 4s, 4p and higher states are calculated in the same V 
N
 

−1
 potential. We use αc = 

2.05a
3

B for the p-wave as a fitting parameter (see formula  (3.2)). The results are presented in 

Table I. Fitting changes both energies and q-coefficients by less than 10%, and agreement with 

previous calculations is also within 10%. Therefore, we use 10% as a conservative estimate of the 

accuracy of q. 

 

Note that the relativistic shift is positive for the s − p singe-electron transitions and negative for 

the d −p transitions. Having transitions with different signs of q- coefficients in the same atom 

(ion) helps to fight systematic errors in the search for variation of α (see Ref. [3.14] for details). 

 

b. Titanium ( Z = 22): We perform calculations for both Ti
+
 and Ti

2+
 starting from the same RHF 

approximation, and using the same single-electron basis set. The ground state of Ti
+
 is 3d

2
4s 

4
F3/2 

and we need to consider transitions into states of the 3d
2
4p configuration. The ground state of Ti

2+
 

is 3d
2 3

F2 and we need to con-sider transitions into the states of the 3d4p configuration. Therefore 

it is convenient to do the RHF calculations for the Ti
2+

 ion with the 3d
2
 open-shell configuration. 

The 4s, 4p and other basis states for the CI method are calculated in the frozen-core field of Ti
2+

. 

 

The fitting parameters chosen are αc = 0.38a
3

B for s-electrons and αc = 0.065a
3

B for d-electrons. 

The results are presented in Table II. As in the case of Mn
+
, there are negative and positive 

relativistic shifts. The effects of fitting and change of basis set does not exceed 10%. The values 

of the q-coefficients for titanium are consistent with calculations for other atoms and with semi-

empirical estimations using the formulas presented in [3.14]. In particular, the values of the 

negative q-coefficients for the d − p transitions are very close to the values for similar transitions 

in Cr II [3.14]. The positive coefficients for Ti
+
 are very close to those for Mn

+
 after rescaling by 

Z 
2
 according to the semi-empirical formula [3.14]. 
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TABLE I: Energies and relativistic energy shifts (q) for Mn+ (cm−1) 

 

State   Energy q  

  theory experiment   

  no fitting fitted  [22] this work  [15] 

3d5 4p 7P2 36091 38424 38366 869 918 

3d5 4p 7P3 36252 38585 38543 1030 1110 

3d5 4p 7P4 36483 38814 38807 1276 1366 

3d4 4s4p  7P2 97323 83363 83255 -3033  

3d4 4s4p  7P3 97554 83559 83376 -2825  

3d4 4s4p 7P4 97858 83818 83529 -2556  
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TABLE II: Energies and relativistic energy shifts (q) for Ti+ and Ti2+ (cm−1) 

 

State  Energy  q 

  theory  experiment  

  no fitting fitted  [22]  

  Ti+   

3d2 4p 4 G5/2 27870 29759 29544 396 

3d2 4p 4 F3/2 28845 30691 30837 541 

3d2 4p 4 F5/2 28965 30813 30959 673 

3d2 4p 4 D1/2 30582 32416 32532 677 

3d2 4p 4 D3/2 30670 32510 32603 791 

3d4s4p 4 D1/2 50651 52185 52330 -1564 

  Ti2+   
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3d4p 3 D1 80558  77000 -1644 
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TABLE III: Energies and relativistic energy shifts (q) for Na (cm
−1

 ) 

 

 State  Energy q 

  theory experiment  [22]  

3p 
2
P1/2 16858 16956 45 

3p 
2
P3/2 16876 16973 63 

4p 
2
P1/2 30124 30267 53 

4p 
2
P3/2 30130 30273 59 
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TABLE IV: Energies and relativistic energy shifts (q) for the carbon atom and its ions (cm
−1

 ) 

 

 State  Energy q 

  theory 

experiment  

[3.22]  

  C   

2s2p

3
 

3
 D3 66722 64087 151 

2s2p

3
 

3
 D1 66712 64090 141 

2s2p

3
 

3
 D2 66716 64091 145 

2s2p

3
 

3
 P1 75978 75254 111 

2s2p

3
 

3
 S1 100170 105799 130 

  C
+
   

2s
2
2

p 
2
 P1/2 74 63 63 

2s2p

2
 

2
 D5/2 76506 74930 179 

2s2p

2
 

2
 D3/2 76503 74933 176 

2s2p

2
 

2
 S1/2 97993 96494 161 

  C2+   

2s2p 
1
 P1 104423 102352 162 

  C3+   

2p 
2
 P1/2 65200 64484 104 

2p 
2
 P3/2 65328 64592 232 

     

 

 

c. Sodium (Z = 11): In contrast to the ions considered above, sodium is an atom with one external 
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electron above closed shells. Its ground state is 1s
2
2s 

2
2p

6
3s 

2
S1/2. Very accurate calculations are 

possible for such systems by including certain types of correlation diagrams to all orders (see, 

e.g. [3.23, 24]). However, since both relativistic and correlation effects for sodium are small we 

use a simplified approach. We calculate the correlation potential ˆΣ (the average value of this 

operator is the correlation correction to the energy of the external electron) in the second order 

only. Then we use it to modify the RHF equations for the valence electron and to calculate the so 

called Brueckner-orbitals. Note that due to iterations of ˆΣ certain types of correlation diagrams 

are still included in all orders in this procedure. The final accuracy of the energy is better than 

1%, and for the fine structure accuracy is 2-6% (see Table III). We believe that the accuracy for 

the relativistic shifts q is on the same level. 

 

d. Carbon (Z = 6): Relativistic effects for carbon and its ions are small and calculations can be 

done with-out fitting parameters. The ground state of neutral car-bon is 1s
2
2s

2
2p

2 3
P0 . Our RHF 

calculations for this atom include all electrons, however, since we need to con-sider 

configurations with excitations from both 2s and 2p states, we treat both as valence states in CI. 

 

 

 

 

 

 

 

 

 

TABLE V: Energies and relativistic energy shifts (q) for oxy-gen ions (cm
−1

) 

 

 State  Energy q 

  theory 

experiment  

[3.22]  

  O+   

2s2p

4
 

4
 P5/2 122620 119873 346 

2s2p

4
 

4
 P3/2 122763 120000 489 
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2s2p

4
 

4
 P1/2 122848 120083 574 

  O2+   

2s2p

3
 

3
 D1 121299 120058 723 

2s2p

3
 

3
 P1 143483 142382 726 

  O3+   

2s2p

2
 

2
 D3/2 129206 126950 840 

  O5+   

1s
2
 

2p 
2
 P1/2 97313 96375 340 

1s
2
 

2p 
2
 P3/2 97913 96908 872 

     

 

 

 

 

 

 

 

For neutral carbon we have performed the calculations for the ground state configuration as 

well as for excited configurations 2s
2
2p3s, 2s2p

3
, 2s

2
2p4s,2s

2
2p3d, 2s

2
2p4d, 2s

2
2p5d and 

2s
2
2p6d. However, we present in Table  IV only results for the 2s2p

3
 configuration. The 

relativistic energy shift for all other configurations is small (q < 50 cm
−1

). This is smaller than 

uncertainty of the q-coefficients for heavier atoms and ions. Since the analysis of quasar spectra 

is based on comparison of the relativistic effects in light and heavy atoms (ions), small 

relativistic energy shifts in light atoms can be neglected. The q-coefficients for the 2s2p
3
 

configuration are larger because this configuration corresponds to the 2s − 2p transition from the 

ground state. These are the lowest valence single-electron states with the largest relativistic 

effects. Other excited configurations correspond to the 2p − ns or 2p − nd (n ≥ 3) transitions. 

However, relativistic energy shifts for higher states are smaller [3.14]. 
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The calculations for C
2+

 and C
3+

 are done in the potential of the closed-shell (helium) core. As 

can be seen from Table  IV, accuracy for the energies is within 10%. We estimate the accuracy 

of q-coefficients at around 10-20%. 

 

e. Oxygen (Z = 8): Relativistic effects for oxygen ions are comparatively large, and become 

larger with in-creasing electric charge. This is in agreement with semi-empirical formulae 

presented in [3.14]. For neutral oxygen, however, q-coefficients are approximately 20 cm
−1

 or 

less; these results are not presented here. 

,
0

qx  (3.1) 

,1)/( 2

0

2  x  

.
)(2

)(
44 ar

rU c





   (3.2) 

 

 

Chapter 5 

 

 

TABLE I: High-priority lines observed in QSO spectra. The first column is the ion; the second 

and third columns are the rest wavelength and the transition frequency, respectively; the fourth 

column is the oscillator strength; the relativistic shift (q value) is shown in the fifth column, 

where known. Those transitions for which high-accuracy laboratory data are needed are marked 

with either ‗A‘ (very important) or ‗B‘ (mildly important). Lines for which there is no measured 

isotopic structure are marked ‗I‘. Additionally, there are some lines for which both the transition 

frequency and isotope shift are known; these are marked with an ‗M‘. They are included here for 

reference only (of course, verification would still be useful). References for precisely measured 

lines are given in the last column. The second set of references are for isotope shift 

measurements, where available. The wavelengths and oscillator strengths are taken from the 

compilation by Morton [4.12, 13]. 
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 Atom/ Wavelength Frequency Oscillator q value  Refs.  

 

Ion 

˚ ω0  

(cm 

−

1 

)  Strength (cm 

−

1 

) 

   

 λ (A)      

          

 C I 945.188 105799.1 0.272600 130 (60) M  [20]  

  1139.793 87735.30 0.013960 0 (100) B   

  1155.809 86519.47 0.017250 ‖   B   

  1157.186 86416.55 0.549500 ‖   B   

  1157.910 86362.52 0.021780 ‖   B   

  1188.833 84116.09 0.016760 ‖   B   

  1193.031 83820.13 0.044470 ‖   B   

  1193.996 83752.41 0.009407 ‖   B   

  1260.736 79318.78 0.039370 30 (10) A   

  1276.483 78340.28 0.004502 17 (10) A   

  1277.245 78293.49 0.096650 −13 (10) A   

  1280.135 78116.74 0.024320 −21 (10) A   

  1328.833 75253.97 0.058040 117 (10) A   

  1560.309 64089.85 0.080410 137 (10) A   

  1656.928 60352.63 0.140500 −24 (10) A   

 C II 1037.018 96430.32 0.123000 168 (10) A   

  1335.662 74869.20 0.012770 178 (10) A   

  1335.707 74866.68 0.114900 181 (10) A   

 C III 977.020 102352.0 0.762000 165 (10) B   

 C IV 1548.204 64590.99 0.190800 232 (20) A  [4.21]  

  1550.781 64483.65 0.095220 104 (20) A  [4.21]  

O I 1025.762 97488.54 0.020300 0 (20) B   

  1026.476 97420.72 0.002460 ‖   B   

  1039.230 96225.05 0.009197 ‖   B   

  1302.168 76794.98 0.048870 ‖   A   
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TABLE I: (continued) 

 

 Atom/ Wavelength Frequency Oscillator q value  Refs.  

 

Ion 

˚ 

ω0  (cm 

−

1 

)  Strength (cm 

−

1 

) 

    

 λ (A)       

             

Na I 3303.320 30272.58 0.013400  59 (4)  B    

  3303.930 30266.99 0.006700  53 (4)  B    

  5891.583 16973.37 0.655000  63 (4)  M  [22][23, 24]   

  5897.558 16956.17 0.327000  45 (4)  M  [4.22][25]   

Mg I 2026.477 49346.73 0.112000  87    I  [4.26]   

  2852.963 35051.27 0.181000  86 (10) 

M  [26, 27][28, 

29]  

Mg II 1239.925 80650.04 0.000267      B    

  2796.354 35760.85 0.612300  211 (10) M  [26, 27][30]   

  2803.532 35669.30 0.305400  120 (10) I  [4.26, 27]   

Al II 1670.789 59851.97 1.880000  270 (30) M  [4.21]   

Al III 1854.718 53916.54 0.539000  464 (30) M  [4.21]   

  1862.791 53682.88 0.268000  464 (30) M  [4.21]   

Si II 1190.416 84004.26 0.250200      B    

  1193.290 83801.95 0.499100      B    

  1260.422 79338.50 1.007000      A    

  1304.370 76665.35 0.094000      A    

  1526.707 65500.45 0.117094  50 (30) I  [4.21]   

  1808.013 55309.34 0.002010  520 (30) I  [4.21]   

Si IV 1393.760 71748.64 0.528000  862    A  [4.21]   

  1402.773 71287.54 0.262000  346    A  [4.21]   

S II 1250.583 79962.61 0.005350      A    

  1253.808 79756.83 0.010700      A    

  1259.518 79395.39 0.015900      A    

Ca II 3934.775 25414.41 0.688000  452    A  [4.13]   

  3969.590 25191.52 0.341000  224    A  [4.13]   
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Ti II 1910.600 52339.58 0.202000 −1564 (150) A    

  1910.938 52330.32 0.098000 −1783 (300) A    

  3067.245 32602.55 0.041500  791 (50) I  [4.26]   

  3073.877 32532.21 0.104000  677 (50) I  [4.26]   

  3230.131 30958.50 0.057300  673 (50) I  [4.26]   

  3242.929 30836.32 0.183000  541 (50) I  [4.26]   

  3384.740 29544.37 0.282000  396 (50) I  [4.26]   

Cr II 2056.256 48632.06 0.105000 −1110 (150) I  [4.26, 31]   

  2062.236 48491.05 0.078000 −1280 (150) I  [4.26, 31]   

  2066.164 48398.87 0.051500 −1360 (150) I  [4.26, 31]   

Mn II 1197.184 83529.35 0.156600 −2556 (450) B    

  1199.391 83375.65 0.105900 −2825 (450) B    

  1201.118 83255.77 0.088090 −3033 (450) B    

  2576.877 38806.66 0.288000  1420 (150) I  [4.26]   

  2594.499 38543.08 0.223000  1148 (150) I  [4.26]   

  2606.462 38366.18 0.158000  986 (150) I  [4.26]   

               

 

 



56 
 

 

TABLE I: (continued) 

 

 Atom/ Wavelength Frequency Oscillator q value  Refs.   

 

Ion 

˚ 

ω0  (cm 

−

1 

)  Strength (cm 

−

1 

) 

    

 λ (A)       

              

Fe II 1063.176 94057.80 0.060000      B    

  1063.971 93987.52 0.003718      B    

  1096.877 91167.92 0.032400      B    

  1121.975 89128.55 0.020200      B    

  1125.448 88853.51 0.016000      B    

  1143.226 87471.77 0.017700      B    

  1144.939 87340.98 0.106000      B    

  1260.533 79331.52 0.025000      A    

  1608.450 62171.63 0.058000 −1300 (300) A  [4.32]   

  1611.200 62065.53 0.001360  1100 (300) A  [4.32]   

  2249.877 44446.88 0.001821      A    

  2260.780 44232.51 0.002440      I  [4.26]   

  2344.212 42658.24 0.114000  1210 (150) I  [4.26, 33]   

  2367.589 42237.06 0.000212  1904    A    

  2374.460 42114.83 0.031300  1590 (150) I  [4.26, 33]   

  2382.764 41968.06 0.320000  1460 (150) I  [4.26, 33]   

  2586.649 38660.05 0.069180  1490 (150) I  [4.26, 33]   

  2600.172 38458.99 0.238780  1330 (150) I  [4.26, 33]   

Ni II 1317.217 75917.64 0.146000      A    

  1370.132 72985.67 0.076900      A    

  1393.324 71770.82 0.022220      A    

  1454.842 68735.99 0.032300      A    

  1467.259 68154.29 0.009900      A    

  1467.756 68131.22 0.006300      A    

  1502.148 66571.34 0.006000      A    



57 
 

  1703.412 58705.71 0.012240      A  [4.31]   

  1709.604 58493.07 0.032400  −20 (250) A  [4.31]   

  1741.553 57420.01 0.042700 −1400 (250) A  [4.31]   

  1751.915 57080.37 0.027700  −700 (250) A  [4.31]   

Zn II 2026.137 49355.00 0.489000  2479 (25) M 

 [4.26, 

31][34]   

  2062.660 48481.08 0.256000  1584 (25) I  [4.26, 31]   
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Chapter 6 
 
 
 
 
Field shift 
 
 
 
 
 
5.1 Method  
 
 

To calculate the field shift (also called the volume shift), we add a finite perturbation 

due to the field shift to the nuclear potential, and then calculate the energy spectrum 

directly. The field shift potential is 
 

U (r) =U (R +  R; r)   U (R; r) (5.1) 
 

where R is the nuclear radius and U (R; r) is the nuclear potential. In our codes we 

use a Fermi distribution for the nuclear charge density (see Fig. 5.1). 

 
To obtain the change in energy of a state due to the  field shift, we add the 

potential 
 
U (r) to the nuclear potential in our Hartree-Fock calculations. By introducing a 

scaling factor we can increase the size of the effect and take the limit as ! 0. To 

calculate the field-shift constant, we take the gradient of a level energy E vs. graph 

and extract F as 

F = E = 5   1 lim dE : (5.2)        

hr
2
i 3 2R  R d 

 

  !0   
  

 

where hr
2
i is the mean-square radius. The nuclear charge distribution can be 

approximated by a uniformly charged sphere of radius R, thus hr
2
i = 

3
5 R

2
. Note that 

the field-shift constant, F , is defined here as having opposite sign to the definition in 

some previous papers, e.g. Refs. [72] and [68]. 
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52 5. Field shift 
 
 
 

Figure 5.1: Schematic graph of the nuclear charge density distribution, , and the 

corresponding potential, U for two different values of the nuclear charge radius R 

(arbitrary units).  
  

 
 
 
 
 
 
 
 
 
U  

 
 
 
 
 
 
 
 
 

 r R R+dR 
 
 

 r 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Higher-order correlation effects in the field shift are not too large, and are 

localised at the nucleus. For single-valence-electron atoms and ions we can include 

them easily by creating approximate Brueckner orbitals (solutions of the modified 

Hamiltonian, h = h
DF

 + 
(1)

) using the second-order operator, defined in Equation 

(3.12). The field shift is proportional in first order to the square of the wavefunction 

at the nucleus. Hence we can include higher-order effects quite simply by 

multiplying the matrix element by the square of the ratio of the Brueckner 

wavefunction to the Dirac-Fock wavefunction at the nucleus, 

 
 
 

 
F

DF+ =  DF+  

(0)
  2 (5.3)  F

DF DF(0) :  
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5.2 King Plots  
 
 
Using King plots

a
, we can extract the ratios of field-shift constants for different 

transitions, provided we have experimental data for a number of different isotopes. 

Taking Eq. (2.7) for two transitions and , we can write 
 

A;A
0
 = F  hr

2
i
A;A0 + k 

1 1 

; 

 
 

 

 

 

(5.4) 

 

A A
0
 

 

 

where k is the total mass shift constant (including normal and specific mass shifts) 

for transition . A similar equation can be written for transition . We wish to eliminate 

the hr
2
i and obtain useful information about the constants F and k. The two axes of 

our King plot are defined by 
 

y(A) =  A;A
0
   = F   hr

2
i
A;A0 + k (5.5)  

 

1  1 

 

 

 

 

 

  

1  
  

1  

 

  
 

 A A0  A A0   
 

 A;A
0
   2  A;A0   

 

x(A) =      = F hr i      + k  :  
 

 1  1    1    
 

 

   

 

 

1 

   

  
 

 A A
0
  A A

0
   

 

x and y are often called \modi ed isotope shifts" (MIS). Plotting the points (x(A); 

y(A)) for several pairs of isotopes (A; A
0
) yields a straight line 

y = 

F
 

x +  k 

F 

k: (5.6) 

 

F
 

F
 

 

This equation is useful for extracting the ratios of eld-shift constants (from the gradi-

ent), but has proven less useful for extracting mass shift constants due to the 

generally small value of the intercept. The value of A
0
 is often xed for all 

experiments in a partic-ular element (it usually corresponds to the leading isotope, 

e.g. for barium A
0
 = 138), however this is not a necessary condition, and can be 

relaxed without changing the method. 
 

As an illustrative example, we present in Fig. 5.2 a King plot of the 6497A and 

5854A lines in Ba II. The isotope shifts were taken from Villemoes et al., 1993 

[5.102]. 

 
a
introduced by King, 1963 [5.57] to explain anomalies in isotope shifts of samarium; see also 



61 
 

Hansen  
et al., 1965 [5.101] 
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54 5. Field shift 
 
 
 
Figure 5.2: King plot of the Ba II 6497 and 5854 lines. The axes are the modified 
isotope shifts (Eq. (5.5)) in units of GHz amu. 
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5.3 Results  
 

 

We tested our method for the calculation of field shift in Ba II because in barium the 

field shift dominates over the mass shift, and there is a lot of experimental data to 

compare with. We present the results of our calculations of specic-mass-shift and 

field-shift constants in Ba II in Table 5.2. The method for calculating SMS is 

discussed in Section 6.1. 

 
Our results for field-shift constants in Ba II were found to be consistent within a 

few percent of the previous theoretical work by Martensson-Pendrill (Table 5.1). In 

the same paper, Ref. [5.68], they say that they have underestimated the 6p1=2 field-

shift constant by around 7%, based on the difference between experimental and 

theoretical calculations of the hyper ne constant A. Also, their 6s constant is said to 

be overestimated, leading to a corrected value of F6p3=2 6s = 4:20(13) GHz/fm
2
. 

These corrected values are in better agreement with the ab initio values obtained in 

this work (F6p3=2 6s = 4:076 GHz/fm
2
). 
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5.3. Results 55 
  

 
 

Table 5.1: Level field-shift constants, F , in Ba II. Due to a 
difference in the definition of F , the values calculated in Ref. 
[5.68] have been presented here with opposite sign. 

 
State Energy

a
 F (MHz/fm

2
) 

  (cm 
1
) Ref. [68] This work 

6s  80686:87 4096 3851 
6p1=260425:31 111:1 150:1 

6p
3=2 58734:45 242:6 225:4 

5d
3=2  75813:02  1223 

5d
5=2  75012:05  1148 

      
a
 Experimental results tabulated by Moore [98] 

 

Table 5.2: Calculated specific-mass-shift (kSMS) and field-shift 

constants (F ) in Ba II transitions. 
 

Transition  kSMS (GHz amu) F (MHz/fm 2 
)  (A)  

 

6p1=2    6s 4934 105 -4001   
 6p

3=2 6s 4554 257 -4077   
 

5d5=2    6s 17622 -550 -4999   
 6p

1=2 5d3=2 6497 653 1073   
 6p

3=2 5d3=2 5854 805 997   
 6p

3=2 
5d

5=2 6142 807 922   
 

        

 
 
 

In Table 5.3 we compare our calculated values of  field-shift constant ratios with 
 
King plot data obtained by combining several different experiments and transitions. 
 
We have used a simple weighted least squares  t to obtain an experimental value for  

the ratio F455=F614.  A two point formula was used for ratios involving the 1762 nm 
 

transition as experimental data exists only for the   
134;138

 and   
136;138

 isotope shifts 
 
[5.103]. Other ratios were extracted by the groups that performed the experiments, with 
 
much higher accuracy. Our values were found to be consistent with experimental values 
 
to within 5%. 
 

We have shown in this section that we can calculate  field shift in heavy atoms, 
 
where it dominates over mass shift. In the rest of this thesis we can now simply remove 
 
its (relatively minor) contribution from the experimental data in light atoms, so that 
 
we can compare the SMS part directly. 
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Table 5.3: Ratios of eld-shift constants in Ba II transitions. In the 

second column we list the measured values, obtained using King 

plots. In some cases we obtain the ratio ourselves by combining 
the results of two separate studies.  

  Transitions   F =F 
  ( / )  This work Experiment 
      

6p
1=2 { 6s / 6p3=2 { 6s 0:982 0:975(3)

a
 

6p
3=2 { 6s / 

6p
3=2 

{ 5d
5=2 4:42 4:50(6)

bc
 

6p
3=2 { 6s / 5d5=2 { 6s 0:816 0:82(4)

bd
 

5d
5=2 { 6s / 

6p
3=2 

{ 5d
5=2 5:42 5:5(3)

cd
 

6p
1=2 

{ 5d
3=2 / 

6p
3=2 

{ 5d
3=2 1:076 1:087(4)

c
 

6p
3=2 { 5d5=2 / 

6p
3=2 { 5d3=2 0:925 0:961(3)

c
 

6p
3=2 { 5d3=2 / 

6p
3=2 { 6s 0:245 0:2312(6)

c
 

         
a
 Wendt et al. [104] 

b
 Wendt et al. [105]  

c
 Villemoes et al. [102] 

d
 Zhao et al. [103] 
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Chapter 7 
 
 
 
 

Specific mass shift 
 
 
 
 
 
The specific mass shift has proven very di cult to calculate in the past (see Section 

2.3). In this Chapter we describe a method of calculation which may make such 

calculations possible even in very di cult cases. The SMS operator is (see Eq. (2.5)) 

H
SMS 

=
 1  pi  pj (6.1) 

 
M

 i<j  

  X   
 

 
 

 
Using many-body perturbation theory in the residual Coulomb operator and specic 

mass shift (SMS) operator to calculate isotope shift shows poor convergence (see 

Section 2.3.1). Therefore, we are looking for an \all order" method of calculation. 

The finite- field scaling method is used, which reduces the task to an energy 

calculation, and includes the SMS in all parts of the calculation. 
 

To calculate kSMS we include a scaled specific-mass-shift operator directly into our 

energy calculation from the very beginning. We add the two-body SMS operator to the 
~ j j ~ 

Coulomb potential Q = 1= r1    r2  +  p1  p2. The operator Q replaces the Coulomb 
 
operator everywhere that it appears in an energy calculation. We recover the specific- 
 
mass-shift constant as  

=0: 

 
 k

SMS 
=

 d! (6.2) 
 

d  
     

    
 

    
 

~ 
The operator Q has the same symmetry and structure as the Coulomb operator (see 

Appendix A). 
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6.1 Single-valence-electron atoms and ions  
 
 
In this section, we develop a method for calculating the isotope shift of atoms and ions 

that can be treated as a single electron above a closed-shell core. These include the 

alkali metals and singly-ionised alkaline-earths, as well as other ions such as Zn II that 

are fairly well approximated by a single electron above a closed-subshell core. 

 
We test our technique by calculating the isotope shift for several light atoms. The 

eld shift dominates in heavy atoms, and having tested it in Ba II (Chapter 5), we can 

now simply remove its contribution from the experimental data in light atoms so that 

we can compare the SMS part directly. After obtaining good agreement with 

experiment in a number of species, we apply the technique to calculate isotope shift 

for astronomically relevant transitions in Mg II, Zn II, Ge II, Si II and Si IV. 

 
 

6.1.1 Calculation of kSMS  
 
 
As a zero approximation we use the Dirac-Fock (relativistic Hartree-Fock) method. 

At the Hartree-Fock stage we include the isotope shift in the exchange potential and 

iterate to obtain self-consistent \dressed" wavefunctions. In the MBPT terms 

explained in Ref. [6.72], the SMS matrix element at this stage is roughly equivalent 

to the rst-order and second-order contributions of the one-particle operator, plus 

higher-order corrections from the random-phase approximation (this corresponds to 

P 
(1)

 + S
(2)

 in the notation of Ref. [6.72]). It is interesting to note that kSMS at this 

stage does not give meaningful results, and can even be of the wrong sign (it is 

labelled as \DF" in Table 6.1). We need to include correlation corrections in order to 

obtain any reasonable accuracy. 

 
We include correlation effects to second order of MBPT; this approach gives good 

accuracy for energies. The perturbation is the difference between the exact and zero-

order Dirac-Fock (DF) Hamiltonians, V = H H0 (see Eq. (3.18)). The many-body 

corrections start in second order; all first-order diagrams have been included in the self-

consistent Hartree-Fock procedure. There are just four second-order diagrams, 

illustrated in Fig. 3.1. However, now we replace the Coulomb operator in these diagrams 
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Table 6.1: Level specic-mass-shift constants, kSMS, in Na I and 

Mg II. The Dirac-Fock (DF) value, which does not include MBPT 
effects, is shown separately (this is approximately equivalent to 

the values labelled \P 
(1)

 + S
(2)

" in Ref. [6.72]). This table shows 

that MBPT effects are very important for accurate calculation of 
specific mass shift in single-valence-electron atoms and ions.  

Ion State kSMS (GHz amu)  
  Ref. [72] This work 

  P (1) + S(2) Final DF Final 
Na I 3s -54 54 -52 69 

 
3p

1=2 -67 -43 -68 -40 

 
3p

3=2 -67 -43 -67 -39 

Mg II 3s  38 -171 83 

 
3p

1=2  -324 -408 -296 
 

3p
3=2  -323 -402 -290 

      

 
 

~ 
with our two body operator Q, and use dressed Hartree-Fock wavefunctions as described  

above. This gives our  final value of kSMS as listed in Table 6.1. 
 

In Table 6.1 we compare our results to those obtained by Safronova and Johnson 
 
(Ref. [6.72]) who calculated the isotope shift to third order in standard MBPT. Our 
 
values are significantly different, in particular the Mg II 3s level shift is more than 
twice 
 
that given in Refs. [70] and [72] (Refs. [70] and [72] are broadly in agreement with each 
 
other).  However we  find that this difference is not so large in the 3p { 3s transition 
 
due to cancellation of higher-order terms between the two levels. We compare our  final 
 
results and those of Ref. [6.72] with experiment in Table 6.2. Agreement is at the 
level 
 
of  1%, which is much smaller than our error estimates (see section 6.1.2). 
 

Our method includes many-body diagrams that are different from those of Ref. 

[6.72], 
 
including some chains of diagrams in all orders. It is also arguably simpler to implement 
 
since it does not require term-by-term calculation of a large number of matrix elements. 
 
 
 
6.1.2 Estimation of error  

 

For single-valence-electron atoms and ions, an estimate of the size of neglected higher-  

order diagrams can be obtained by calculating a new value of kSMS  that includes 
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Table 6.2: Comparison of calculated values of the specific mass 
shift (SMS) of transitions in Na I and Mg II with experiment. 

 
Isotopes Transition  SMS (MHz)   

 

   Ref. [72] This work Expt.
a
 

 

23  22Na I 
3p

1=2 { 3s 192 214 (48) 215 (1) 
 

      214 (2) 
 

26  24Mg II 

3p
3=2 { 3s 192 212 (48) 214  

 3p
3=2 { 3s 1157 1196 (18) 1207 (100) 

 

          
a
 these values are extracted from isotope shift experiments in Table 6.3 

 
 
 

some higher-order chains of diagrams. We add the operator 
(1)

2 (see Eq. (3.12)) to 

the exchange potential in the Dirac-Fock Hamiltonian (3.2) for the valence electron, 

h = h
DF

 + . Thus, we calculate the single electron Brueckner orbital. We also include 

a scaling factor f with the operator ( ! f ) in order to t the experimental energy. The 

rescaling of simulates some higher order correlation corrections that were omitted in 

our calculation. Including in our Hartree-Fock calculation allows us to obtain another 

value for kSMS, and the difference between this new value and the old second-order 

value gives us an estimate of the error. 

 
 
6.1.3 Comparison with experiment  
 
 
We compare our results with experimental data for alkali-metal atoms and ionised 

alkaline-earth metals in Table 6.3. In these systems it is more valuable to compare only 

the specific mass shift with those extracted from experiment than to compare the entire 

isotope shift. This is because the mass shift dominates strongly in these atoms and 

ions, and also because the SMS is generally considered more di cult to calculate. We 

have removed the field shift and the normal mass shift from the experimental values of 

the isotope shift in order to obtain an experimental value for the specific mass shift. The 

field shift values used in Table 6.3 were calculated using the method presented in 

Chapter 5. While our calculation of F has been shown to be good, the field shift also 

depends on having knowledge of hr
2
i for the relevant isotopes. 

 

For Na I we use the value quoted in Ref. [6.72] of hr
2
i
23;22

 = 0:205(3) fm
2
. This 

value is only from an empirical t, and shouldn't be trusted too far. The field shift is very 
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Table 6.3: Comparison of calculated values of the specific mass shift (SMS) with experiment for several 

transitions in single-valence-electron species. The experimental values of the SMS in the final column are 
extracted by subtracting the normal mass shift (NMS) and field shift (FS) from the experimental isotope 

shift (IS). 
 
Isotopes Transition Energy IS (expt.) NMS FS  SMS (MHz)  

 

  (cm 
1
) (MHz) (MHz) (MHz) This work Expt. 

 

23  22Na I 3p1=2 { 3s 16956.18 758:5 (7)
a
 551 8  214 (48) 215 (1) 

 

   756:9 (1:9)
b
      214 (2) 

 

26  24Mg II 
3p3=2 { 3s 16973.38 757:72 (24)

c
 552 8  212 (48) 214  

 

3p3=2 { 3s 35760.97 3050 (100)
d
 1185 42  1196 (18) 1207 (100) 

 

41  39K I 4p1=2 { 4s 12985.17 235:25 (75)
e
 267 13 (5) 32 (21) 19 (6) 

 

43  40Ca II 
4d1=2 { 4s 27398.11 585 (9)

f
 564 13 (5) 20 (30) 34 (13) 

 

4p1=2 { 4s 25191.54 706 (42)
g
 723 36 (3) 22 (1) 19 (45) 

 

   672 (9)
h
      15 (11) 

 

   685 (36)
i
      2 (39) 

 

 4p3=2 { 4s 25414.43 713 (31)
g
 729 36 (3) 5 (1) 20 (34) 

 

   677 (19)
h
      16 (22) 

 

   685 (36)
i
      8 (39) 

 

 3d3=2 { 4s 13650.21 4180 (48)
g
 392 47 (4) 3502 (217) 3835 (52) 

 

 3d5=2 { 4s 13710.90 4129 (10)
g
 393 47 (4) 3487 (215) 3783 (14) 

 

 
4p

1=2 
{ 3d

3=2 11541.33 3464:3 (3:0)
j
 331 12 (1) 3479 (218) 3807 (4) 

 

   3483 (40)
g
      3826 (41) 

 

 
4p

3=2 
{ 3d

3=2 11764.22 3462:4 (2:6)
j
 337 12 (1) 3507 (217) 3811 (4) 

 

   3446 (20)
g
      3795 (21) 

 

 
4p

3=2 
{ 3d

3=2 11703.53 3465:4 (3:7)
j
 336 12 (1) 3492 (216) 3813 (5) 

 

   3427 (33)
g
      3774 (34) 

 

             

 
a
 Pescht et al. [106] 

e
 Touchard et al. [110] 

h
 extracted from Martensson-Pendrill et al. [67] 

b
 Huber et al. [107] 

f
 H•orb•ack et al. [64] i Maleki and Goble [112] 

c
 Gangrsky et al. [108] 

g
 Kurth et al. [111] j N•ortersh•auser et al. [113] 

d
 Drullinger et al. [109]    
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small in this atom, so the errors do not matter too much. For Mg II we have used the 

value hr
2
i
26;24

 = 0:33 fm
2
 from another empirical t, the equation Rnuc = 1:1A

1=3
 

fm. This is a poor approximation, but in this case the field shift is small even in 

relation to the error in the experimental isotope shift. In Table 6.3 we have not 

included an error contribution for the field shift in either of these atoms, since we 

really do not know how accurate these approximations are. 
 

The values of hr
2
i are known for K I and Ca II from muonic x-ray experiments, 

allowing us to calculate the field shift much more accurately. This is fortunate 

because the SMS is relatively small for the p { s transitions in these atoms, and 

hence the field shift plays a much larger role. We use the values hr
2
i
41;39

 = 

0:117(40) fm
2
 for K I from Ref. [114], and hr

2
i
43;40

 = 0:1254(32) fm
2
 for Ca II from 

Ref. [6.115]. In Ca II the change in mean-square nuclear radius is given to high 

precision, so we have included an additional error of 5% in the field shift that comes 

from the constant F . This is a pessimistic estimate of error based on the accuracy 

we achieved calculating F for transitions in Ba II. 

 
Table 6.3 shows that our method can reliably calculate the isotope shift in alkali-

metal atoms and singly-ionised alkaline-earth metals, including those transitions 

with a large specific mass shift. 

 
 
 

6.1.4 Results  
 
 
We have shown that our method works in atoms for which we have available 

experimental data (Section 6.1.3). In Table 6.4 we tabulate values for the mass and 

field-shift constants for some astronomically useful transitions. We have not given 

errors for F , however we can say that they are less than 5% based on comparison 

of calculation with experiment in Ba II (Section 5.3). 

 
In Table 6.5 we present the results of isotope shift calculations between common 

isotopes of astronomically important ions (meaning important for astronomy, rather than 

really ridiculously important). We have used the isotope shift constants presented in 

Table 6.4 with Equation (2.7) in order to calculate the isotope shift between particular 
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Table 6.4: Mass (kNMS and kSMS) and eld-shift constants (F ) 

for some useful transitions in ions that can be treated as 
having a single valence electron. 

Ion Transition F 
k

NMS 
k

SMS 

   (MHz/fm
2
) (GHz amu) (GHz amu) 

Mg II 3p1=2 { 3s -127 -587 373 (12) 
 3p3=2 { 3s -127 -588 373 (6) 

Si II 4s { 3p1=2 171 -1077 1257 (29) 
 4s { 3p3=2 171 -1072 1243 (28) 

Si IV 
3p

1=2 { 3s -484 -1172 1535 (11) 
 

3p
3=2 { 3s -485 -1180 1505 (7) 

Zn II 
4p

1=2 { 4s -1596 -797 1310 (69) 
 

4p
3=2 { 4s -1596 -812 1266 (69) 

Ge II 5s { 4p1=2 1088 -1026 1046 (69) 
 5s { 4p3=2 1083 -997 960 (62) 
       

 
 
 
 
isotopes. Results of measurements for Zn II were brought to our attention [116] after 
 
we had performed our calculations.  These results matched our prediction extremely 
 
well. 
 

In Ge II and Si II, the specific mass shift cancels the normal mass shift entirely, 
 

making the  field shift, and hence  hr
2
i, important.  We have just used the empirical  

formula Rnuc = 1:1A
1=3

 fm
2
 to obtain values of  hr

2
i in these ions. This is extremely 

 
rough, and although it seems to work in Zn II to within a 20% accuracy based on the 
 
experimental data given, we really don't know if this holds for Si and Ge at all. In the 
 
Si IV transitions presented, it is less important to have good values for the  field shift 
 
because there is no cancellation between the NMS and SMS. 
 
 
 
 
 

6.2 Mg I  
 

 
Magnesium is one of the simplest and well-studied two-electron atoms. Because of that 
 
it is often used as a test ground for different methods of atomic calculations. In this 
 
section we show that we can calculate the isotope shift of some magnesium transitions 
 
for which experimental values are available. 
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Table 6.5: Total isotope shifts for some astronomically relevant 
transitions in single-valence-electron ions. We have presented 
two errors: the rst comes from our uncertainty in calculation of the 

specific-mass-shift constant, kSMS; and the second comes from 

the field shift, which is mainly due to lack of knowledge of hr
2
i. A 

negative sign means that the total shift is opposite to the normal 

mass shift. The experimental value for the 4p3=2 { 4s transition in 

Zn II is 676(6) MHz [6.116], in agreement with our prediction. 
 

Isotopes Transition Energy
a
 Isotope Shift 

 

   (cm 
1
) (MHz) 

 

30  28Si II 4s { 3p1=2 65495.1 375 (70)(11) 
 

30  28Si IV 
4s { 3p3=2 65208.1 351 (67)(11) 

 3p
1=2 { 3s 71289.6 6294 (26)(31) 

 

66  64Zn II 

3p
3=2 { 3s 71749.9 6241 (18)(31) 

 4p
1=2 { 4s 48480.6 653 (32)(78) 

 

74  70Ge II 

4p
3=2 { 4s 49354.4 632 (33)(79) 

 

5s { 4p1=2 62402.4 491 (53)(101) 
 

 5s { 4p3=2 60635.3 533 (48)(101) 
 

       

a Moore [98] 
 

 

 

6.2.1 Configuration interaction  

 
It is interesting to examine the contribution of various parts of the CI Hamiltonian to the 
 
SMS. We can separate the contribution of the specific mass shift from the Hamiltonian 
 
operator of Eq. (3.7): 

H = H0 +  HSMS = H0 +pi  pj : (6.3) 
X  
i<j 

 
The SMS operator for the valence electrons in the frozen core approximation can 

 
be divided into the core, one-valence-electron and two-valence-electron parts: 
 

HSMS = HSMS
(0)

 + HSMS
(1)

 + HSMS
(2)

 (6.4) 

 
The rst term in Eq. (6.4) corresponds to the change of the core potential. It accounts 

for the change of the core orbitals when the Dirac-Fock equations are solved for the 

operator H . The term HSMS
(1)

 accounts for the exchange interaction of the valence 

electrons with the core: 

hijHSMS
(1)

jki  = 
Ncore  

 

hi; jjp1  p2jj; ki : (6.5) 
 

X 
 

j=1 
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6.2. Mg I  
  

 

The last term, HSMS
(2)

, corresponds to the specific mass shift between the two 

valence electrons, p1 p2. 

 
In order to study the role of the valence correlations we made three different 

calculations: 

 

1. The basic one-configurational calculation for the ground state 3s
2 1

S0 and for 

the 3s3p 
1;3

PJ states. All core orbitals and orbitals 3s and 3p are formed in 

the V 
N

 
2
 approximation (i.e. by solving Dirac-Fock equations for the core).  

 

2. Full two-electron CI for a medium sized r basis set [8sp5d], which includes the 

orbitals 1 8s1=2, 2 8pj and 3 5dj . The 3s, 3p and 3d orbitals are solutions of 

the V 
N

 
2
 Dirac-Fock potential. The remaining virtual orbitals are constructed 

by multiplying the previous orbital of the same partial wave by the simple radial  
 

function and orthogonalizing with the other orbitals.  

 

3. Full two-electron CI for the B-spline basis set [12spd9f ].  
 
 

Below we refer to these calculations as small, medium, and large. The large 

calculation is already very close to the saturation of the valence CI. Here the 

difference between the theoretical spectrum and experiment is mostly caused by the 

neglect of the core-valence correlations. 
 

Table 6.6 presents the resulting SMS level shift constants, kSMS of Eq. (2.7), in 

different approximations. The contributions of individual terms in Eq. (6.4) are given, as 

well as their sum. It is interesting to note that all of the terms are large in comparison to 

the total SMS. There is a large cancellation between contributions within levels, and also 

between different levels. This shows that high accuracy is required in each term, so that 

the residual SMS in transitions is still correct after cancellation. 

 
Comparison of the different approximations shows a strong dependence on the size of 

the basis sets. We see that it is very important to saturate the basis as completely as 

possible. In some cases the SMS changes drastically even between the medium and the 

large basis sets. In particular, the difference between large and medium SMS calculation for 

the level 3s3d 
3
D1 is 39%. This is mostly due to the f -wave contribution, which 
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Table 6.6: Level specific-mass-shift constants, kSMS, in Mg I. 

Individual contributions from Eq. (6.4) are presented [(0), (1), 

(2)], as well as the total. For some levels we give medium CI 

(M) and one-configurational results (S) in addition to the large 

CI (L) ones.  

  kSMS (GHz amu)  
 

Level (0) (1) (2) Total CI 
 

        

3s
2 1

S0 559 883  131 193 L 
 

" 561 881  135 186 M 
 

" 857 1125  0 268 S 
 

3s4s 
3
S1 422 615  44 149 L 

 

" 431 624  52 142 M 
 

3s4s 
1
S0 415 615  21 179 L 

 

" 424 630  30 177 M 
 

3s3d 
1
D2 343 616 267 541 L 

 

3s3d 
3
D1 375 561  41 144 L 

 

" 381 571 10 200 M 
 

3s3d 
3
D2 375 561  41 144 L 

 

3s3d 
3
D3 375 561  41 144 L 

 

3s3p 
3
P0

o
 428 

 
853 

 
144 

 
570 L 

 

3  o 
428 

   

L  

3s3p P1 852 145 569 
 

3s3p 
3
P2

o
 428 850 145 567 L 

 

" 431 850 142 561 M 
 

" 759 1161 266 668 S 
 

3s3p 
1
P1

o
 408 698  329  38 L 

 

" 411 700  341  52 M 
 

" 946 1163  265  49 S 
 

3s4p 
3
P0

o
 402 630  13 215 L 

 

3s4p 
3
P1

o
 402 629  13 215 L 

 

3s4p 
3
P2

o
 402 629  13 214 L 

 

          

 
 
 

 

is absent in the medium basis set. Note that the SMS operator can only mix orbitals 
 
with   l = 1. That is why the f -wave contribution is more important for the levels of 
 
the configuration 3s3d.  On the other hand, for the same reason, the contribution of 
 
higher partial waves to the considered levels is suppressed. 
 

Analysis of Table 6.6 shows that valence correlations tend to decrease the 

contributions of the  first two terms of the SMS operator. The third (two-particle) 
term of 

 
the SMS operator is generally not screened. On the contrary, for some levels the two- 
 
particle contribution grows with the size of the basis set.  Note that the  nal value 
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6.2. Mg I          
 

    

 Table 6.7: Speci c-mass-shift constants, kSMS, of transitions from 
 

 the ground state (3s
2 1

S0) in Mg I.       
 

          

 Upper Energy
a
   kSMS (GHz amu)    

 

 Level (cm 
1
)CI CI +  

(1)
 CI +  (1;2)  

 

 3s3p 
3
P0

o
 21850 378 487 492 

 

 3s3p 
3
P1

o
 21870 

 
377 

 
486 

 
491  

 

 3  o 
21911 

      
 

 3s3p P2 375 485 489 
 

 3s3p 
1
P1

o
 35051 231 120 134  

 

 3s4s 
3
S1 41197 43 59 49 

 

 3s4s 
1
S0 43503 13 94 85 

 

 3s3d 
1
D2 46403 345 500 477 

 

 3s4p 
3
P0

o
 47841 17 136 126 

 

 3s4p 
3
P1

o
 47844 16 136 126 

 

 3s4p 
3
P2

o
 47851 16 136 126 

 

 3s3d 
3
D3 47957 52 87 77 

 

 3s3d 
3
D2 47957 52 87 77 

 

 3s3d 
3
D1 47957 52 

 
87 

 
77  

 

 1  o 
49347 

 

5 
   

 

 3s4p P1  120 108 
 

 3s4d 
1
D2 53135 100 246 239 

 

 3s4d 
3
D1 54192 32 99 88 

 

 3p
2 3

P0 57813 225 469 464 
 

              
a
 Experimental values tabulated by Moore [98] 

 
 

 
of the two-particle contribution to the ground state SMS is of the same order as the 

other contributions (as it is for most other states), while in the one-con gurational 

approximation it is zero. 

 

 

6.2.2 Role of  
 
 
The B-spline basis used in this section is the same that was used to calculate energies 

and relativistic shift for Mg I in Section 4.1. For a comparison of energies, see Table 4.1. 

Agreement with experiment is within 0.4% for all considered levels. Table 6.7 presents 

the resulting SMS level shift constants, kSMS of Eq. (2.7). In each table we present 

results of the pure CI calculation (which agree with our previous calculation, Sec-tion 

6.2.1), as well as calculations including 
(1)

 only, and both 
(1)

 and 
(2)

. 

 
The core-valence e ects are very important for the SMS calculation. In particular the 

single-valence-electron diagrams (included in 
(1)

) can improve accuracy drastically 
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in cases where the pure CI method is not very good. Although 
(2)

 is important for 

calculation of energy, it appears to make little difference to kSMS. This is easily 

understood since the most important two-body diagram (the direct diagram, Fig. 

3.3.1, corresponding to the screening of the electron-electron interaction by the core 

electrons) makes no contribution to the SMS. The exchange diagrams in 
(2)

 do have 

an effect, but this is much smaller than the one-body contribution. 

 
 
6.2.3 Comparison with experiment  

 
In Table 6.8 we compare experimental and calculated frequency shifts between isotopes 
 
26

Mg and 
24

Mg ( 
26;24

). We compare the SMS part only, which is extracted from 

experiment by subtracting the NMS. We have ignored the eld shift for simplicity; it is 

approximately 20-30 MHz or 2% of the NMS, which is less than the experimental 

uncertainty in most cases, and is of the order of the error in our SMS calculations. 

 
Also presented in Table 6.8, for a theoretical comparison, are the results of Veseth 

(Ref. [71], 1987) and Johnsson et al. (Ref. [79], 1999). Veseth used non-relativistic 

many-body perturbation theory within the algebraic approximation to calculate the 

isotope shift to third order for some transitions. Jonsson et al. used a non-relativistic 

multiconfigurational Hartree-Fock approach, which allowed for both core and valence 

excitations in the CI. These calculations are discussed in more detail in Section 2.3. 
 

An under-studied transition that is seen in quasar absorption spectra is the 2026 A 

line of Mg I (3s
2 1

S0 ! 3s4p 
1
P1

o
). From Table 6.7, we calculate the isotope shift of this 

line as 
26;24

 = 2950(50) MHz (the error here is based on the absence of eld shift as well 

as the incompleteness of saturation of the basis set used to calculate kSMS). 

 

 

6.3 Carbon  
 
 
The isotope shift of carbon is particularly important for testing models of chemical evolution; 

this is explained in Section 1.2.2. We also have one more reason to study carbon: it is a well 

studied atom, and we can compare the results of our method with those of other theoretical 

analyses, as well as a few experiments. In particular, much progress 
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Table 6.8: Comparison of calculated values of the specific mass shift of several transitions in Mg I with experiment. All 

isotope shifts are between 
26

Mg and 
24

Mg. The experimental values of the SMS are obtained by subtracting the 
normal mass shift (NMS) from the experimental isotope shift (IS). We have neglected the field shift; it is of the order of 
20-30 MHz. Also presented are the results of Refs. [71] and [79] for theoretical comparison. 
 
    IS (expt.)  NMS    SMS (MHz)   

 

Transition 
  

(MHz) 
 

(MHz) CI CI + 
(1) 

CI + 
(1;2) 

Expt. Ref. [71] Ref. [79] 
 

 (A)    
 

3s
2 1

S0 ! 3s3p 
3
P1

o
 4572 2683 (0)

a
  1153 1208 1559  1573 1530 1378 1666 

 

3s
2 1

S0 ! 3s3p 
1
P1

o
 2853 1412 (21)

b
 1848 -740 -383  -428 -436  -409 

 

    1390 (31)
c
       -458   

 

3s3p 
3
P0

o
 ! 3s4s 

3
S1 5169 396 (6)

d
  1020 -1347 -1371 -1419 -1416   

 

3s3p 
3
P1

o
 ! 3s4s 

3
S1 5174 390 (5)

d
  1019 -1345 -1369 -1416 -1409   

 

3s3p 
3
P2

o
 ! 3s4s 

3
S1 5185 390 (7)

d
  1017 -1339 -1363 -1411 -1407   

 

3s3p 
3
P1

o
 ! 3p

2 3
P0 2782 1810 (80)

e
 1895 -486 -56  -86  -85   

 

3s3p 
3
P0

o
 ! 3s3d 

3
D1 3830 60 (15)

b
 1376 -1377 -1283 -1329 -1316 -1269  

 

3s3p 
3
P1

o
 ! 3s3d 

3
D1;2 3833 61 (3)

b
  1375 -1374 -1280 -1326 -1314   

 

3s3p 
3
P2

o
 

! 
3s3d 

3
D1;2;3 3839 58 (4)

b
  1373 -1368 -1274 -1321 -1315   

 

3  o 3 
3094 420 (20) 

e 
1704 -1309 -1241 -1291 -1284 

  
 

3s3p P1 ! 3s4d D1    
 

3s3p 
1
P1

o
 ! 3s4d 

1
D2 5530 2107 (15)

d
 953 1059 1173  1195 1154   

 

                  
a
 Sterr et al. [117] 

b
 Hallstadius [118] 

c
 Le Boiteux et al. [119]  

d
 Hallstadius and Hansen 

[120] 
e
 Novero et al. [121] 

 
 
 
 6

.3
. C

a
rb

o
n 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 6

9
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has been made to calculate isotope shifts using the multiconfigurational Hartree-

Fock (MCHF) and configuration interaction (CI) approach [77{80]; see Section 2.3.2. 

 
In this section we show that our CI + MBPT method has accuracy comparable to 

that of the MCHF calculations, and are accurate enough to be used to measure 

isotope abundances. We present results for each species of carbon separately, in 

order of increasing number of valence electrons. The basis sets used in this section 

are the same as those described in Section 4.2. The MBPT basis is fully saturated 

in the sense that the energies and isotope shifts do not change with the addition of 

more basis functions. The saturation achieved for the CI basis is described below. 

 
 
 
 
 
6.3.1 C IV  
 

 

C IV has one electron above a closed 1s
2
 core. It can therefore be treated as a 

single valence electron atom using MBPT, or as a three electron atom using CI. We 

have used both methods; the results are presented for comparison in Table 6.9. In 

each case, the calculations were done using the B1 basis set. The isotope shift 

results have also been compared with previous theoretical approaches, namely the 

MCHF { CI calculations presented in Ref. [77], and the combined the Hylleraas [85] 

and full-core plus correlation (FCPC) calculations [86] also presented in Ref. [77]. 

 
As noted previously, the MBPT basis was completely saturated, however we have 

only included second-order diagrams in our calculation. By contrast, the CI calculations 

are complete (although they do not include the Breit interaction and QED effects), but 

the basis is not completely saturated. We have used an effective 22spd8f basis for the 

CI calculation, including only single and double excitations from the leading 

configurations (SD-CI). We included triple excitations for a smaller basis, 14spd8f : this 

made a difference of less than 2 cm 
1
 in the transition energy, and less than 1 GHz amu 

for kSMS. Other f -wave and higher partial waves were also found to be unimportant. 

 
All methods give the same value for the transition energies and SMS constants 

to within 0.5%. 
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6.3. Carbon  
  

 

Table 6.9: Energies and speci c-mass-shift constants, kSMS of 

transitions from the ground state (2s 
2
S1=2) in C IV. The transi-

tion energies presented do not include the addition of mass 
shift e ects. Note that all results presented by other groups are 
non-relativistic and hence do not distinguish ne-structure. 

 

Level Expt.
a
 DF +  

(1)
 Full CI Other works 

  Energy (cm 
1
) 

2p 
2
P1

o
=2 64484 64551 64594 64564

b
 

2p 
2
P3

o
=2 64592 64681 64725 64399

c
 

    64449
d
 

  kSMS (GHz amu) 

2p 
2
P1

o
=2  -4511 -4521 -4526

b
 

2p 
2
P3

o
=2  -4504 -4514 -4527

c
 

    -4528
d
 

      
a
 Moore [98] 

b
 MCHF-CI: Carlsson et al. [77] 

c
 MCHF: Godefroid et al. [80]  

d Hylleraas + FCPC: Results of King [85], and Wang et al. [86], combined 
and presented in Ref. [77] 

 

 

 

 

6.3.2 C III  

 

The ground state for C III is 1s
2
2s

2 1
S0. We have done our calculations both as a 

four-electron CI problem (full CI) and by combining two-valence-electron CI with 

MBPT, considering 1s
2
 as the frozen core (CI + 

(1;2)
). All results are presented in 

Table 6.10. Also included are CI results (the pure two-electron CI method) and CI + 
(1)

 results (that do not include 
(2)

). This allows us to examine the roles of the 

different parts of the core-correlation. The CI and CI + 
(1)

 results are calculated with 

the B2 basis set; the complete CI + 
(1;2)

 results have been calculated using both the 

B1 and B2 sets. Additionally we have presented the MCHF results of Ref. [79]. 

 
For the full four-electron CI method we used a very large basis 16spdf , in the 

SD-CI approximation. This was not enough to saturate the basis entirely, and we 

could go no further because the Hamiltonian matrix became too large. The error in 

kSMS from the full CI calculation could be as large as 100 GHz amu. Nonetheless, 

they are in agreement with the calculations of Ref. [79], as well as the results of our 

own CI + MBPT. 
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Table 6.10: Energies and specific-mass-shift constants, kSMS, of transitions 

from the ground state (2s
2 1

S0) in C III. Note that the MCHF results are non-
relativistic and hence do not distinguish ne-structure. 

 

Level Expt.
a
 CI CI +  

(1)
 CI +  (1;2) Full CI MCHF

b
 

 

    B2 B1   
 

2s2p 
3
P0

o
 
  Energy (cm 

1
)   

 

52367 52750 52322 52349 52383 52506 52280 
 

2s2p 
3
P1

o
 52391 52784 52357 52383 52418 52534  

 

2s2p 
3
P2

o
 52447 52852 52427 52453 52488 52592  

 

2s2p 
1
P1

o
 102352 103719 103365 102725 102775 103109 102598 

 

2s2p 
3
P0

o
 
  kSMS (GHz amu)   

 

 -3439 -3478 -3473 -3470 -3483 -3475 
 

2s2p 
3
P1

o
  -3438 -3476 -3472 -3468 -3480  

 

2s2p 
3
P2

o
  -3434 -3473 -3468 -3465 -3474  

 

2s2p 
1
P1

o
  -2688 -2759 -2790 -2784 -2882 -2817 

 

          
a
 Moore [98] 

b
 J•onsson et al. [79] 

 
 
 

In Ref. [79] the MCHF results were given an error of 1%; our CI + MBPT results 
 
are within this range, and so we believe that we have obtained a similar accuracy. It is 
 
also worth noting again that we have excluded the extra box diagrams with \wrong" 
 

parity from the results presented.  The inclusion of these diagrams in   
(2)

  makes a 

difference of around 0.1% to the kSMS constants. 
 
 
 
6.3.3 C II  

 

We have treated C II as a three-valence-electron ion; its ground state is 2s
2
2p 

2
P1

o
=2. 

We have used the B2 basis 20spdf , which corresponds to the V 
N

 
1
 potential, and we 

have restricted ourselves in the CI problem to single and double excitations from the 
 

leading configurations 2s
2
2p and 2s2p

2
. 

 
In Table 6.11 we present all results for C II. Again we have presented the breakdown 

 
of the various parts of the CI + MBPT method. We have also performed our 

calculations using the B1 basis: this changed the results by less than 1% for all results 

except 
 

for the 
2
S1=2 transition, in which the difference was around 3%.  For this transition, 

neither basis set was enough to completely saturate kSMS. Furthermore, the difference 
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6.3. Carbon  
  

 

Table 6.11: Specific-mass-shift constants, kSMS, of transitions from 

the ground state (2s
2
2p 

2
P1

o
=2) in C II. Note that the MCHF-CI results 

are non-relativistic and hence do not distinguish ne-structure. 
 

Level  Energy
a
  kSMS (GHz amu)  

  (cm 
1
) CI CI +  

(1)
 CI +  (1;2) MCHF-CI

b
 

2s2p
2 4

P1=2 43003 -2913 -2956 -2960  

2s2p
2 4

P3=2 43025 -2912 -2954 -2958  

2s2p
2 4

P5=2 43054 -2910 -2952 -2956  

2s2p
2 2

D5=2 74930 -2604 -2666 -2672 -2672 
2s2p

2 2
D3=2 74933 -2604 -2666 -2671  

2s2p
2
 
2
S1=2 96494 -1204 -1301 -1321 -1411 

2s2p
2
 
2
P1=2 110624 -1323 -1410 -1471 -1531 

2s2p
2
 
2
P3=2 110666 -1320 -1407 -1468  

        
a
 Experimental results tabulated by Moore [98] 

b
 J•onsson et al. [78] 

 
 
 
 
 
between the results of CI + MBPT and MCHF-CI is fairly large for this transition 
 

(around 7%). Adding the next most important configuration, 2s
2
3s, to the leading set  

changes the energy of the 
2
S1=2 transition by 30 cm  

1
 (0.03%) and kSMS by 14 GHz amu 

 
(around 1%). The e ect on all other transitions was much smaller. 
 
 
 
 
 
 
 
 
6.3.4 C I  
 

 
Transition energies in neutral carbon were presented in Table 4.7. The ground state of 
 

C I is 2s
2
2p

2 3
P0. A discussion of the calculations and their limitations for this atom is 

 
given in Section 4.2.4. In particular, being restricted to taking excitations from only a  

few leading configurations leads to an error of up to 80 GHz amu in kSMS. 
 

In Table 6.12 we present the SMS constants for C I. We are within 1% of the values 
 
obtained using the MCHF-CI method (Refs. [77] and [78]).  For most transitions the 
 

e ect of core-correlations on kSMS is around 1 or 2%, however in some cases they are 
 

larger (for example, in 2s2p
3 3

P 
o
 the core correlations are 8% of the total). 
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 6. Speci c mass shift 
 
 
 
 
 
 

 

Table 6.12: Specific-mass-shift constants, kSMS, of transitions from 

the ground state (2s
2
2p

2 3
P0) in C I. Note that the MCHF-CI results 

are non-relativistic and hence do not distinguish ne-structure. 
 

Level Energy
a
  kSMS (GHz amu)  

 (cm 
1
) CI CI +  

(1)
 CI +  (1;2) MCHF-CI 

2s
2
2p

2 1
S0 21648 186 180 191 152

b
 

2s2p
3 5

S2
o

 33735 -2540 -2579 -2588 -2583
b
 

2s
2
2p3s 

3
P0

o
 60333 1405 1405 1419  

2s
2
2p3s 

3
P1

o
 60353 1406 1406 1420  

2s
2
2p3s 

3
P2

o
 60393 1408 1408 1422  

2s
2
2p3s 

1
P1

o
 61982 1549 1551 1559 1553

b
 

2s2p
3 3

D3
o

 64087 -2165 -2224 -2227  

2s2p
3 3

D1
o

 64090 -2165 -2224 -2227 -2222
c
 

2s2p
3 3

D2
o

 64091 -2165 -2224 -2227  

2s2p
3 3

P1
o

 75254 -1272 -1390 -1392  

2s2p
3 3

P2
o

 75255 -1272 -1389 -1391  

2s2p
3 3

P0
o

 75256 -1271 -1390 -1392  

2s
2
2p3d 

1
D2

o
 77680 1334 1320 1331  

2s
2
2p4s 

3
P0

o
 78105 1398 1392 1407  

2s
2
2p4s 

3
P1

o
 78117 1404 1397 1412  

2s
2
2p4s 

3
P2

o
 78148 1415 1408 1422  

2s
2
2p3d 

3
F2

o
 78199 1378 1368 1381  

2s
2
2p3d 

3
F3

o
 78216 1381 1372 1384  

2s
2
2p3d 

3
D1

o
 78293 1430 1422 1434  

2s
2
2p3d 

3
D2

o
 78308 1429 1421 1432  

2s
2
2p3d 

3
D3

o
 78318 1430 1420 1432  

2s
2
2p4s 

1
P1

o
 78340 1443 1435 1446  

2s
2
2p3d 

1
F3

o
 78530 1451 1440 1452  

2s
2
2p3d 

1
P1

o
 78731 1436 1426 1438  

2s
2
2p3d 

3
P2

o
 79311 948 998 1010  

2s
2
2p3d 

3
P1

o
 79319 956 1006 1018  

2s
2
2p3d 

3
P0

o
 79323 960 1009 1021  

2s
2
2p4d 

1
D2

o
 83498 1277 1258 1268  

       
a
 Experimental results tabulated by Moore [98] 

b
 Carlsson et al. [77] 

c
 J•onsson et al. [78] 
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6.3. Carbon      
 

    

 Table 6.13:   Comparison of calculated 
13

C { 
12

C isotope shifts, 
 

 
13;12

, with experiment.      
 

    

 

 

 Transition  13;12 (cm 1)  

 Lower Level Upper Level  Expt. This work  

 (A) 
 

 C I       
 

 2s
2
2p

2 3
P2 2s2p

3 5
S2

o
 2967 0:670 (5)

a
 0:674

b
 

 

 2s
2
2p

2 1
S0 2s

2
2p3s 

1
P1

o
 2479 0:156 (3)

c
 0:151 

 

 
C II 

  0:156 (2)
d
   

 

       
 

 2s2p
2 2

S1=2 2s
2
3p 

2
P3

o
=2 2837 0:612 (2)

c
 0:617 

 

 2s2p
2 2

S1=2 2s
2
3p 

2
P1

o
=2 2838 0:623 (3)

c
 0:617 

 

          
a
 Bernheim and Kittrell [122]  b
 Actually, the 2s

2
2p

2 3
P0 { 2s2p

3 5
S2

o
 transition was 

calculated. 
c
 Burnett [123] 

d Holmes [124] 
 

 

 

 

6.3.5 Comparison with experiment  
 
 
In Table 6.13 we compare our calculations with the few experiments that exist for 

carbon ions; in all cases agreement is within around 0.005 cm 
1
, which corresponds 

to an error in kSMS of around 20 GHz amu. 

 
In Table 6.14 we present total isotope shifts for some important transitions. These 

transitions can be observed in quasar absorption spectra, and can therefore be used to 

probe variation of and isotope abundance evolution. The results are presented both in 

MHz and km/s: the latter is the preferred form for use in astronomy.
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Table 6.14: Total calculated 
13

C { 
12

C ( 
13;12

) and 
14

C { 
12

C ( 
14;12

) 
isotope shifts for important transitions. We believe the errors are of the 
order of 0.1 GHz. 

 
Transition  13;12  14;12  

 

Ground State Upper Level  (GHz) (km/s) a (GHz) (km/s) a 
 

(A)   
 

C I         
 

2s
2
2p

2 3
P0 2s

2
2p3s 

3
P1

o
 1657 -2.75 0.46  -5.09 0.84  

 

 2s2p
3 3

D1
o

 1560 21.10 -3.29  39.12 -6.10  
 

 2s2p
3 3

P1
o

 1329 16.91 -2.25  31.34 -4.17  
 

 2s
2
2p4s 

3
P1

o
 1280 -0.82 0.10  -1.51 0.19  

 

 2s
2
2p3d 

3
D1

o
 1277 -0.94 0.12  -1.75 0.22  

 

 2s
2
2p4s 

1
P1

o
 1276 -1.01 0.13  -1.88 0.24  

 

 2s
2
2p3d 

3
P1

o
 1261 1.84 -0.23  3.42 -0.43  

 

C II         
 

2s
2
2p 

2
P1

o
=2 2s2p

2 2
D3=2 1336 25.10 -3.35  46.53 -6.21  

 

 2s2p
2 2

D5=2 1336 25.10 -3.35  46.54 -6.21  
 

 2s2p
2 2

S1=2 1037 18.70 -1.94  34.66 -3.59  
 

C III         
 

2s
2 1

S0 2s2p 
1
P1

o
 977 28.76 -2.81  53.33 -5.21  

 

C IV         
 

2s 
2
S1=2 2p 

2
P1

o
=2 1551 35.89 -5.57  66.54 -10.32  

 

 2p 
2
P3

o
=2 1548 35.79 -5.54  66.35 -10.27  

 

           
a =   =  c (km/s). A negative velocity means that 

14
C (and 

13
C) are at lower wavelength 

than 
12

C. 
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Chapter 8 

Cosmological variation of deuteron binding energy, strong interaction and quark masses from big bang 

nucleosynthesis 

 

 
8     8 
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1
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6 
 

    Η ‰
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     5 
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23 24 25 26 27  
 

  Q‰10
9
 HKL    

 

 

FIG. 2: 1σ-ranges around the maxima of individual likelihood functions. The solid lines show 1σ-ranges 

for D, the dashed lines are for 
4
 He (using Yp from  Eq.5), and the dot-dashed lines are for 

7
Li. For 

lithium, there are 2 solutions for η and Q, hence the shape of the error contours is more complicated. 

 
 
II. Constraint from CMB anisotropy measurements  

 

The value of η found from CMB anisotropy measurements 

 

η0 = (6.14 ± 0.25) × 10
−10
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has rather high accuracy. It is natural to use the constraint from this measurement in our study of the 

deuteron binding energy effects. To do this we construct another likelihood function which is a function 

of Q only. 

If we neglect nondiagonal elements in wij we can con-struct the individual likelihood functions for D, 
4
 

He, and 
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24 24.5 25 25.5 26 Q‰10
9
 HKL 

 

 

FIG. 3: 1σ-range about the maximum of Lf (η, Q) (again us-ing Yp from  Eq.5). The lighter shaded 

region shows CMB-WMAP data for η. The darker shaded region is the 1σ-range for η from BBN 

calculations using the present-day value of the deuteron binding energy, Q = 25.82. A lower value of Yp 

will produce a larger deviation between the ηW M AP and ηBBN . 

 

7
Li. They are constructed in the same way as  (7.23) using instead of general function Lf (η, Q) the 

individual ones 

 

LfD (η, Q), LfHe(η, Q) , LfLi(η, Q). These functions are plotted in Fig. 4 together with the general 

likelihood function  (7.23) 

 

From the deuterium likelihood function we found the position of the maximum and 1σ deviations: 

 

QD = (25.74 + 0.92 − 0.68) × 10
9
. (7.24) 
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FIG. 4: Individual likelihood functions  (7.23) for the light el-ements. From top to bottom: D, 

4
 He  (Eq.5), Li, and the combined 

datset. 
 
 
 
 
The shape near the maximum is apparently non-symmetric. The position of the maximum is fully com-patible with the 

present value of Q = 25.82 ×10
9
 K. The helium likelihood function is much narrower (see the sec-ond panel from the top). 

It gives for the maximum and 
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6 
 

for the 1σ the values 
 

QHe = (25.37 ± 0.13) × 10
9

. (7.25) 
 
This value lies below the present value of the binding energy. Finally, the lithium likelihood function has the 
maximum at  

QLi = (24.88 + 0.43 − 0.59) × 10
9

. (7.26) 
 
The position of this maximum is compatible with the helium result.  

The general likelihood function  (7.23) is plotted in the lower panel in Fig. 4 The position of its maximum dif-fers 
only slightly from the position given by the helium likelihood function.  

QBBN  = (25.34 ± 0.12) × 10
9
 (7.27) 

 
It is interesting to compare the light element abun-dances for two values of the deuterium binding energies. In Fig. 5 

we plotted the traditional curves for the light element abundances as a functions of η for two values of Q. The dotted lines 
in the figures correspond to a  
present value of Qpresent = 25.82 ×10

9
 K, while the solid curves correspond to a new value QBBN = 25.34 × 10

9
 K. Clearly, the new value QBBN 

moves the curves closer 
to the data. 

The result which we obtained may be presented as 
 

δQ/Q = −0.019 ± 0.005, (7.28) 
where δQ = QBBN − Qpresent. If we do not fix η and try to fit it simulaneously with Q we obtain 
 

δQ/Q = −0.022 ±0.008, η = (6.51 + 0.77 −0.66) ×10
−10

. (29)  
The obtained η is fully compatible with the one measured by WMAP.  

These values of δQ/Q and η were obtained for high value of the helium mass fraction Yp . If we use as an input the low value of Yp from  
(6) we obtain 
 

δQ/Q = −0.048 ± 0.004, (7.30) 
If we fit both δQ/Q and η we obtain 
 

δQ/Q = −0.059 ±0.007, η = (7.55 + 0.91 −0.75) ×10
−10

. (31)  
Finally if we use the value of Yp for 

4
He obtained using the whole sample of 14 points, with increased error bars, 

from  Eq.(1), we obtain 
 

δQ/Q = −0.033 ± 0.006, (7.32) 
and for δQ/Q and η 
 

δQ/Q = −0.042 ±0.009, η = (7.00 + 0.85 −0.72) ×10
−10

. (33)  
The results given in  eqs.(28) and  (30) therefore represent an estimate of the plausible range in δQ/Q. Despite the 
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FIG. 5: The predicted light element abundance yields as a function of η, for two 

values of the deuteron binding energy, Q. The dotted curve corresponds to the 

present value of Qpresent = 25.82 × 10
9
 K. The solid curve corresponds to the new 

value of Q = QBBN = 25.34 × 10
9
 K. The vertical line corresponds to η = 6.14 

(WMAP value). The shaded regions is the 1σ-ranges for the observed light element 

abundances, where Yp is from  eq.5. 



91 
 

7 
 
Combining eqs.  (32) and  (34) we obtain 

 

δ(ms/ΛQC D 

) 

= (1.1 ± 0.3) × 10
−3

 (7.35) 

 

(ms/ΛQC D )  
 
This equation may contain an additional factor (close to one) reflecting unknown 

theoretical uncertainty in eq.  (7.34). Note that we obtain here variation at the level 

10
−3

 while the limits on variation of α [7.2, 48] and ΛQC D /Mplank [7.2, 3] are an order 

of magnitude weaker. This may serve as a justification of our approach. 
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Chapter 9 

 

Searching for dark matter and variation of fundamental constants with laser and 

maser interferometry 

Any slight variations in the fundamental constants of Nature, which may be induced 

by dark matter or some yet-to-be-discovered cosmic field, would characteristically 

alter the phase of a light beam inside an interferometer, which can be measured 

extremely precisely. Laser and maser interferometry may be applied to searches for 

the linear-in-time drift of the fundamental constants, detection of topological defect 

dark matter through transient-in-time effects and for a relic, coherently oscillating 

condensate, which consists of scalar dark matter fields, through oscillating effects. 

Our proposed experiments require either minor or no modifications of existing 

apparatus, and offer extensive reach into important and unconstrained spaces of 

physical parameters. 

 

 

 

The idea that the fundamental constants of Nature might vary with time can be traced 

as far back as the large numbers hypothesis of Dirac, who hypothesized that the 

gravitational constant G might be proportional to the reciprocal of the age of the 

Universe [8.1]. More contemporary theories predict that the fundamental constants 

vary on cosmological timescales (see e.g. [8.2{4]). Astronomical observations of 

quasar absorption spectra hint at the existence of a spatial gradient in the value 

of the _ne-structure constant, _ = e2=~c [8.5, 6]. Data samples from the Keck 

Telescope and Very Large Telescope [8.7, 8] independently agree on the direction 

and magnitude of this gradient, which is significant at the 4:2_ level. A consequence 

of this astronomical result is that, since the solar system is moving along this spatial 
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gradient, there should exist a corresponding temporal shift in _ in Earth's frame of 

reference at the level __=_ _ 10^-19/yr [8.9]. Finding this variation with laboratory 

experiments could independently corroborate the astronomical result. To date, atomic 

clocks have provided the most sensitive laboratory limit on annual variations 

in _: __=_ . 10^-17/yr [8.10]. The question of dark matter (DM), namely its identity, 

properties and non-gravitational interactions, remains one of the most important 

unsolved problems in physics. Various DM candidates and searches therefor have 

been proposed over the years [8.11]. One such candidate is the axion, a pseudoscalar 

particle which was originally introduced in order to resolve the strong CP problem of 

Quantum Chromodynamics (QCD) [12, 13] (see also [8.14{17]). The axion is 

believed to have formed a condensate in the early Universe [8.18]. This relic axion 

condensate can be sought for through a variety of distinctive signatures (see e.g. 

[8.19{26]). Likewise, a condensate consisting of a scalar DM particle may also have 

formed. The scalar field _ comprising this condensate oscillates with frequency ! _ 

m_c2=~ and may couple to the fermion fields: 

 

 (1) 

 

 

 (2) 

 

F is the electromagnetic _eld tensor. _X is a large energy scale, which from 

gravitational tests is constrained to be _X _ 1021 GeV [8.27]. Eqs. (8.1) and (8.2) 

alter the fundamental constants in an oscillating manner as follows, respectively: 

 

 (3) 
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 (4) 

 

 

Quadratic couplings in _, with the replacement X is a less strongly constrained 

energy scale, with constraints from laboratory and astrophysical observations given 

by _0 X _ 10^4 GeV [8.28]. We note that the quadratic portal gives rise to not only 

oscillating effects, but may also lead to non-oscillating space-time variation of the 

fundamental constants: _X=X = _2  0=2(_0X)2, which arises due to space-time 

variations in. These effects may be sought for using terrestrial experiments (atomic 

clocks, Oklo natural nuclear reactor, and laser/maser interferometry as suggested in 

this paper) and astrophysical observations (quasars, white dwarves, Big Bang 

Nucleosynthesis, Cosmic Microwave Background measurements). Another possible 

DM candidate is topological defect DM, which is a stable non-trivial form of DM 

that consists of light DM fields and is stabilised by a self-interaction potential [8.29] 

(self-gravitating DM fields can also form solitons, see e.g. Ref. [8.30]). These objects 

may have various dimensionalities: 0D (monopoles), 1D (strings) or 2D (domain 

walls). The transverse size of a topological defect depends on the mass of the particle 

comprising the defect, d _ ~=m_c, which may be large (macroscopic or galactic) for 

a sufficiently light DM particle. The light DM particle comprising a topological 

defect can be either a scalar, pseudoscalar or vector particle. Recent proposals for 

pseudoscalar-type defect searches include using a global network of magnetometers 

to search for correlated transient spin preces-sion effects [8.31] and electric dipole 

moments [8.32] that arise from the coupling of the scalar field derivative to 

the fermion axial vector currents. Recent proposals for scalar-type defect searches 

include using a global net-work of atomic clocks [8.27], and Earth rotation and pul- 

sar timing [8.32], to search for transient-in-time alterations of the system frequencies 

due to transient-in-time variation of the fundamental constants that arise from the 

couplings of the scalar field to the fermion and photon fields. The best current 

sensitivities for transient-in-time variations of the fundamental constants on the 

time scale of t _ 1 � 100 s with terrestrial experiments are offered by atomic clocks, 

with an optical/optical clock combination [33, 34] sensitive to variations in _: 
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__=_ _ 10�15�10�16 and a hyperfine/optical clock combination [35] to variations 

in the electron-to-proton mass ratio me=mp: _(me=mp)=(me=mp) _ 10�13 � 

10�14. There are many possibilities for the interactions of topological defect DM 

particles with the Standard Model particles. Here we consider couplings with a 

quadratic dependence on the scalar field, which were considered previously in Refs. 

[8.27, 32]. A scalar dark matter _field _ may interact with fermions via the coupling: 

 

 (5) 

 

and with photons via the coupling: 

 

 (6) 

 

Eqs. (8.5) and (8.6) alter the fundamental constants in a transient manner as follows, 

respectively: 

 

  (7) 

 

 (8) 

 

 

In the present work, we point out that laser and maser interferometry may be used as 

particularly sensitive probes to search for linear-in-time, oscillating and transient 
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variations of the fundamental constants of Nature, including _ and me=mp. Laser and 

maser interferometry are very well established techniques and have already proven to 

be extremely sensitive probes for exotic new physics, including searches for the 

aether, tests of Lorentz symmetry [8.36] and gravitational wave detection [8.37]. 

Laser interferometry has also recently been proposed for the detection of dilaton dark 

matter [8.38]. We consider the use of an interferometer with two arms of lengths L1 

and L2, for which the observable is the phase difference __ = !_L=c between the two 

split beams, where ! is the reference frequency and _L = L1 �L2. In the absence of 

any variation of fundamental constants, the two split beams interfere destructively 

(__ = (2N + 1)_, where N is an integer). In the presence of variation of the 

fundamental constants, the reference frequency changes, as do the arm lengths, due 

to changes in the sizes of the atoms, which make up the arms. Depending on the type 

of laser or maser, as well as the arm lengths and materials used, the net result may be 

a change in the phase difference, _(__). Consider the simpler case when a laser/maser 

with-out a resonator is used, for example, the nitrogen laser operating on the 3_u ! 

3_g electronic transition and superradiant Raman lasers [8.39{41]. In this case, ! is 

determined entirely by the specific atomic/molecular transition, the simplest 

archetypes of which are the electronic Rydberg me=mpMr) and rotational (! 

_(e2=aB~)(me=mpMr)) transitions, where _ is the relevant nuclear magnetic dipole 

moment, Krel is the derivative of the hyperfine relativistic (Casimir) correction fac-

tor with respect to _, and mpMr is the relevant reduced mass. The sensitivity 

coefficients KX are defined by: 

 

 (9) 

 

where mq is the quark mass and Ʌ_QCD is the QCD scale, and are given in Table I 

for several archetypal transitions, 

where we have made use of the relation _(_L)=_L _ _aB=aB for _L 6= 0 (aB is the 

Bohr radius). Since _(__) is proportional to __, a higher laser frequency gives a 

larger effect. Note that, unlike atomic clock experiments [8.10, 45, 46] and 

astrophysical observations [8.5, 7, 47] that search for a variation in the fundamental 

constants, in which two di_erent transition lines are required to form the 
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dimensionless ratio !A=!B, laser/maser interferometry can in principle be performed 

with only a single line, since the observable __ is a dimensionless parameter by 

itself. 

 

 

TABLE I. Sensitivity coe_cients for _, me=mp and mq=_QCD for a laser or maser 

without a resonator and operating on typical atomic and molecular transitions. The 

values of Krel and Kmq=_QCD for 87Rb and 133Cs have been taken from [8.42] 

(see also Refs. [8.43, 44]).  

 

Treating variations in frequencies (which depend only on the fundamental constants) and 
lengths independently (for variations in the latter may also arise due to undesired effects), 
we find 
 

 (10) 

 

X is a particular fundamental constant. In particular, we note that shifts in the arm 

lengths do not ap-pear in Eq. (8.10), meaning that undesirable e_ects, such as seismic 

noise or tidal e_ects, are not observed with this 

setup and high precision may in principle be attained for low-frequency (large 

timescale) e_ects. This is quite dis-tinct from conventional interferometer searches 

for gravi-tational waves, which have comparatively low sensitivity to low-frequency 

e_ects, since in this case deviations in arm lengths are sought explicitly and low-

frequency sys-tematic e_ects greatly reduce the sensitivity of the appa-ratus in this 

region. Consider now the case when a laser/maser containing a resonator is used, for 

instance, the Nd:YAG solid-state laser. In this case, ! is determined by the length of 

the resonator, which changes if the fundamental constants change. In the non-

relativistic limit, the wavelength and _L (as well as the size of Earth) have the same 

depen-dence on the Bohr radius and so there are no observ-able e_ects if changes of 

the fundamental constants are slow (adiabatic). Indeed, this may be viewed as a sim- 

ple change in the measurement units. Transient e_ects due to topological defect DM 

passage may still produce e_ects, since changes in ! and _L may occur at dif-ferent 

times. We note that a global terrestrial network (LIGO, Virgo, GEO600 and 

TAMA300) or a space-based network of interferometers (LISA) are particularly well 



101 
 

suited to search for topological defects through the cor-related e_ects induced by 

defects. Likewise, temporal correlations of homogeneous e_ects (including linear-in- 

time and oscillating e_ects) produced in several di_erent interferomers can also be 

sought for. The sensitivity of interferometry to non-transient ef-fects is determined 

by relativistic corrections, which we estimate as follows. The size of an atom R is 

determined by the classical turning point of an external atomic elec-tron. Assuming 

that the centrifugal term _ 1=R2 is small at large distances, we obtain (Zi + 1)e2=R = 

jEj. 

 

E is the energy of the external electron and Zi is the net charge of the atomic species 

(for a neutral atom Zi = 0). This gives the relation: _R=R = �_jEj=jEj. The single- 

particle relativistic correction to the energy in a many-electron atomic species is 

given by [8.48]: 

 

 (11) 

 

where En = �mee4(Zi + 1)2=2~2_2 is the energy of the external atomic electron, j is 

its angular momentum, Z is the nuclear charge, and _ _ 1 is the e_ective principal 

quantum number. The corresponding sensitivity coefficient in this case is 

 

 

 (12) 

 

Note that the sensitivity coe_cient depends particularly 

strongly on the factor Z2. jK_j _ 1 for light atoms and may be of the order of unity in 

heavy atoms. Further-more, the arms of di_erent length can also be replaced by two 

arms (of the same length) made from di_erent materials, for which the coe_cients 

Z2=_(j + 1=2) are di_erent. We estimate the sensitivity to variations in me=mp from 

the di_erences in the internuclear separations in molecular H2 and D2, which are 

0:74144 _A and 0:74152 _A, respectively [49]. These data give: _R=R _ �10�4 

_(me=mp)=(me=mp). Since only di_erences in the coe_cients of proportionality for 
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the arm and resonator are observable in principle, the corresponding sensitivity 

coe_cient is therefore Kme=mp. 

Note that for a slow variation of fundamental constants (which includes linear-in-

time e_ects, transient e_ects due to a slowly moving and/or large topological defect, 

and low-frequency oscillating e_ects), the laser/maser resonator may be locked to an 

atomic/molecular fre-quency. In these cases, the sensitivity coe_cients will be the 

same as those for the case in which a laser/maser without a resonator is used. We 

estimate the sensitivity of laser and maser interfer-ometry to e_ects stemming from a 

relic, coherently os-cillating condensate, which consists of scalar DM _elds. The 

typical spread in the oscillation frequencies of the scalar DM particles, which make 

up the condensate, is given by 2m_v2=m_c2) _ (v2=c2), where a virial velocity of v 

_ 10�3c would be typical in our local Galactic neighbourhood. From the strain 

sensi-tivity curves of various interferometers [50{52], and as-suming that the 

condensate consisting of a scalar DM particle saturates the known local cold DM 

content, _c2=2~2 _ 0:4 GeV/cm3, we arrive at the accessi-ble region of parameter 

space shown in Fig. 1, in which we assume the use of a laser without a resonator. 

The region of parameter space accessible by the recently con-structed Fermilab 

Holometer (L = 40 m) [53] is expected to be similar to those accessible by the 

interferometers as shown in Fig. 1, but shifted toward higher scalar DM masses by 

several orders of magnitude. 

 

 

 

 

 

FIG. 1. (Color online) Region of dark matter parameter space accessible by various 

interferometers. The shaded blue region corresponds to the region of parameter space 

excluded by ex-isting laboratory and astrophysical observations [8.28]. Finally, we 
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estimate the sensitivity of laser and maser interferometry to e_ects stemming from 

topological de-fects, which consist of scalar DM _elds, using the simple model of a 

domain wall with a Gaussian cross-sectional pro_le of root-mean-square width d. 

The simplest do-main wall direction of incidence to consider (which pro duces non-

zero e_ects) is directly along one of the inter-ferometer arms (towards the laser 

ource, without loss of generality). Neglecting relativistic e_ects and assuming the use 

of a resonator-based laser, the time-domain signal is given by 

 

 (13) 

 

_TDM is the energy density associated with a topological defect network, v is the 

typical speed of a defect, _ is the average time between encounters of a system with 

defect objects, and erf is the standard er-ror function. Cosmological models of 

topological defect DM have su_cient exibility for topological defects to be the 

dominant contributor to the total DM content of the universe [8.27]. For the purposes 

of estimating the sensi-tivity of laser interferometers to topological defects, we may 

hence assume _TDM _ 0:4 GeV/cm3. Also, from hints o_ered by pulsar timing data 

in relation to the pul-sar glitch phenomenon [8.32], we assume _ _ 1 year. The power 

spectrum corresponding to the time-domain signal in Eq. (8.13) is given by 

 

 (14) 

 

 

 with the following asymptotic limit when d _ L: 

 

 (15) 
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From the power spectrum in (14), the plots for which are presented for 

interferometers of various sizes in the Supplemental Material, and the strain 

sensitivity curves of these interferometers [50{52], we arrive at the accessible region 

of parameter space shown in Fig. 2. We note that the sensitivity of interferometers 

drops rapidly with increasing values of d when d & L. For instance, for a LIGO 

interferometer (L = 4 km), the sensitivity to de-fects with d = 40 km is _0 X . 10�4 

GeV. The region of parameter space accessible by the Fermilab Holometer [53] is 

expected to be similar to those accessible by the interferometers as shown in Fig. 2, 

but with a rapid drop in sensitivity occurring for d & 100 m. We hence suggest the 

use of laser and maser in-terferometry as particularly sensitive probes to search for 

linear-in-time, oscillating and transient variations of the fundamental constants of 

Nature, including _ and me=mp. Our proposed experiments require either minor or 

no modifications of existing apparatus, and offer extensive reach into important and 

unconstrained spaces of physical parameters. We note that oscillating variation of 

fundamental constants due to a scalar condensate may also be sought for using  tomic 

clocks. 

 

 

 

FIG. 2. (Color online) Region of dark matter parameter space accessible by various 

interferometers. The shaded blue region corresponds to the region of parameter space 

excluded by ex-isting laboratory and astrophysical observations [8.28]. 

 

 

 

SUPPLEMENTAL MATERIAL 
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We present the power spectra produced by a domain wall with a Gaussian cross-

sectional pro_le of root-mean-square width d, passing directly along one of the arms 

of a Michelson Morley interferometer. The asymptotic case d _ L can be summarised 

by a single plot in the 

combined variable fd (Fig. 3). The plots in the general case d . L are shown for the 

LIGO, Virgo, GEO600,TAMA300 and Fermilab Holometer interferometers in Figs. 

4, 5, 6, 7 and 8, respectively. FIG. 3. (Color online) Power spectrum [in units_2 

TDML2_ 2d2~2c2_3=(_0X)4v2_(m/s)2] versus fd, produced by a domain wall with 

a Gaussian cross-sectional pro_le passing directly along one of the arms of a 

Michelson-Morley interferometer with arms of equal length L. 

 

7 

FIG. 4. (Color online) Power spectra [in units _2TDM_ 2v2d2~2c2=(_0X)4_s2] 

versus frequency, produced by a domain wall with a Gaussian cross-sectional pro_le 

passing directly along one of the arms of a LIGO interferometer (L = 4 km). From 

left to right: d = 1 m, d = 10 m, d = 100 m, d = 1000 m, d = 4000 m. FIG. 5. (Color 

online) Power spectra [in units _2TDM_ 2v2d2~2c2=(_0X)4_s2] versus frequency, 

produced by a domain wall with a Gaussian cross-sectional pro_le passing directly 

along one of the arms of a Virgo interferometer (L = 3 km). From left to right: d = 1 

m, d = 10 m, d = 100 m, d = 1000 m, d = 3000 m. 

 

8 

FIG. 6. (Color online) Power spectra [in units _2TDM_ 2v2d2~2c2=(_0X)4_s2] 

versus frequency, produced by a domain wall with a Gaussian cross-sectional pro_le 

passing directly along one of the arms of a GEO600 interferometer (L = 600 m). 

From left to right: d = 1 m, d = 10 m, d = 100 m, d = 600 m. 

FIG. 7. (Color online) Power spectra [in units _2TDM_ 2v2d2~2c2=(_0X)4_s2] 

versus frequency, produced by a domain wall with a Gaussian cross-sectional pro_le 

passing directly along one of the arms of a TAMA300 interferometer (L = 300 m). 

From left to right: d = 1 m, d = 10 m, d = 100 m, d = 300 m. 

 

9 

FIG. 8. (Color online) Power spectra [in units _2TDM_ 2v2d2~2c2=(_0X)4_s2] 

versus frequency, produced by a domain wall with a Gaussian cross-sectional pro_le 
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passing directly along one of the arms of a Fermilab Holometer interferometer (L = 

40 m). From left to right: d = 0:1 m, d = 1 m, d = 10 m, d = 40 m. 
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Chapter 10 

Observations 

Thee Sigma Rule 

 

 

Keck/HIRES spectra 

 

The data used here were kindly provided in reduced form by Jason X. Prochaska and 

Arthur M. Wolfe and are detailed in Prochaska & Wolfe (1996, 1997, 1999).  

Outram et al. (1999) have also kindly contributed their spectrum of Q 1759+75 taken 

in July 1997. Here we provide only a brief description of the observations and data 

reduction, deferring a more detailed discussion to Section 3-3.1.2.  

 

All the QSO spectra were obtained at the Keck I 10-m telescope on Mauna Kea with 

the HIRES facility (Vogt et al. 1994) over several observing runs from 1994 to 1997. 

The QSOs were generally quite faint (mV  19:0) so several ∼1-2 hour exposures 

were co-added for each object. Most of the data were reduced using the HIRES data 

reduction package written by T. Barlow, MAKEE. This package converts the two-

dimensional echelle images to fully reduced, one-dimensional, wavelength-calibrated 

spectra.  

 

Thorium-argon (ThAr) spectra were taken before and after the QSO exposures 

and co-added to provide a calibration spectrum. ThAr lines were selected and 

centroided to form the wavelength solution. Some of the QSO spectra were reduced 

when MAKEE had no wavelength  calibration facility. In these cases, wavelength 

calibration was carried out using IRAF routines. Spectra not reduced in MAKEE 

were fully reduced within IRAF. 1 error arrays were generated assuming Poisson 

counting statistics. We fitted continua to regions of each spectrum containing either 
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or both of the Si IV doublet transitions by fitting Legendre polynomials to  ∼500 

kms
-1

 sections 

 

The sample comprises 21 Si IV absorption systems (towards 8 QSOs) over a redshift 

range z = 2.0-3.1 (mean redshift (Zabs) = 2.6). The S/N per pixel ranges from 

15-40 with most spectra having S=N ∼ 30 and FWHM  7:5 kms
-1

 (R = 34000). 

We provide an example absorption system in Fig. 2.1. We plot all 21 absorption 

systems in the Appendix. 

 

Analysis 

 

Although equation 2.1 is a simple approach to the specific case of an alkali doublet, 

a more general approach is to write down the energy equation for any individual 

transition, within any multiplet and for any species. Dzuba et al. (1999a,b) and 

Webb et al. (1999) suggested the convenient formulation 

 

z = 0 + q1xz + q2yz,   (2.3) 

 

where z is the wavenumber in the rest-frame of the cloud, at redshift  z, in which 

z/0 may not equal unity. 0  is the wavenumber as measured in the laboratory 

and xz and yz contain the information about /: 

 

xz  (z/0)
2
 – 1 and yz  (z/0)

4
 – 1 (2.4) 

 

 

The q1 and q2 coefficients represent the relativistic corrections to the energy for 

a particular transition. The q1 coefficients are typically an order of magnitude 

larger than the q2 coefficients and so it is the relative magnitudes of q1 for different 

transitions. 
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Conclusions 

 

In this paper we present new refined calculations of the parameters q, which 

determine α-dependence of the transition frequencies for a number of ions used in 

the astrophysical search for α-variation. These ions appear to be very different from 

the theoretical point of view. Because of that we had to use different methods and 

dif-ferent levels of approximation for them. The final accu-racy of our results differs 

not only for different ions, but also for different transitions. 

 

The simplest system is Zn II, which has one valence electron. On the other hand, 

this is the heaviest ion and it has the largest core, which includes 3d
10

-shell. That 

gave us the opportunity to study corrections to q from the core-valence correlations 

and from Breit interaction. We found the former to be about 17% and the latter to be 

less than 1%. For lighter ions Breit interaction should be even smaller and can be 

safely neglected. Other ions also have much smaller and more rigid cores, so one 

might expect that core-valence correlations are few times weaker there in comparison 

to Zn. That allows us to neglect core-valence correlations for all other ions discussed 

in this paper. 

 

Si II has the smallest core 1s
2
 . . . 2p 

6
 and three valence electrons. For neutral Mg, 

which has the same core, the core-valence corrections to the 3s → 3p transition 

frequencies were found to be about 4% [33, 36]. CI calculation for Si II is relatively 

simple and the errors associated with incompleteness of CI space are small. Thus, our 

estimate of the accuracy for Si on 6% level seems to be rather conservative. 

 

Cr, Fe, and Ni have the core 1s
2
 . . . 3p

6
 and the core excitation energy varies from 

2 a.u. for Cr II to 2.6 a.u. for Ni II. In comparison, the core excitation energy for Zn 

II is 0.9 a.u. Therefore, we estimate the core-valence correlation corrections for these 

ions to be at least two times smaller, than for Zn II. 

 

Additional error here is associated with incomplete-ness of the CI space. These 

ions have from 5 to 9 valence electrons and CI space cannot be saturated. To 

estimate corresponding uncertainty we performed several calculations for each ion 
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using different basis sets and two different computer packages described in Sec. II. 

The basic Dirac-Hartree-Fock orbitals were calculated for different configurations 

(for example, for the ground state configuration and for excited state configuration, 

etc.). 

 

Supplementary information on the accuracy of our calculations can be obtained from 

comparison of calculated spectra and g-factors with experimental values. The later 

appear to be very important as they give information about electron coupling, which 

depends on relativistic corrections and on interaction between LS-multiplets. Our 

results for Cr II appear to be very close for different calculations and are in good 

agreement with the experiment both in terms of the gross level structure and spin-

orbit splittings (see Table IV), so we estimate our final error here to be about 10 – 

12%. 

 

In this paper we present new refined calculations of the parameters q, which 

determine α-dependence of the transition frequencies for a number of ions used in 

the astrophysical search for α-variation. These ions appear to be very different from 

the theoretical point of view. Because of that we had to use different methods and 

dif-ferent levels of approximation for them. The final accu-racy of our results differs 

not only for different ions, but also for different transitions. 

 

The simplest system is Zn II, which has one valence electron. On the other hand, 

this is the heaviest ion and it has the largest core, which includes 3d
10

-shell. That 

gave us the opportunity to study corrections to q from the core-valence correlations 

and from Breit interaction. We found the former to be about 17% and the latter to be 

less than 1%. For lighter ions Breit interaction should be even smaller and can be 

safely neglected. Other ions also have much smaller and more rigid cores, so one 

might expect that core-valence correlations are few times weaker there in comparison 

to Zn. That allows us to neglect core-valence correlations for all other ions discussed 

in this paper. 

 

Si II has the smallest core 1s
2
 . . . 2p 

6
 and three valence electrons. For neutral Mg, 

which has the same core, the core-valence corrections to the 3s → 3p transition 
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frequencies were found to be about 4% [33, 36]. CI calculation for Si II is relatively 

simple and the errors associated with incompleteness of CI space are small. Thus, our 

estimate of the accuracy for Si on 6% level seems to be rather conservative. 

 

Cr, Fe, and Ni have the core 1s
2
 . . . 3p

6
 and the core excitation energy varies from 

2 a.u. for Cr II to 2.6 a.u. for Ni II. In comparison, the core excitation energy for Zn 

II is 0.9 a.u. Therefore, we estimate the core-valence correlation corrections for these 

ions to be at least two times smaller, than for Zn II. 

 

Additional error here is associated with incomplete-ness of the CI space. These 

ions have from 5 to 9 valence electrons and CI space cannot be saturated. To 

estimate corresponding uncertainty we performed several calculations for each ion 

using different basis sets and two different computer packages described in Sec. II. 

The basic Dirac-Hartree-Fock orbitals were calculated for different configurations 

(for example, for the ground state configuration and for excited state configuration, 

etc.). 

 

Supplementary information on the accuracy of our calculations can be obtained from 

comparison of calculated spectra and g-factors with experimental values. The later 

appear to be very important as they give information about electron coupling, which 

depends on relativistic corrections and on interaction between LS-multiplets. Our 

results for Cr II appear to be very close for different calculations and are in good 

agreement with the experiment both in terms of the gross level structure and spin-

orbit splittings (see Table IV), so we estimate our final error here to be about 10 – 

12%. 

 

Allowing the deuteron binding energy, Q, to vary in BBN appears to provide a 

better fit to the observational light element abundance data. Varying Q 

simultaneously does two things; it resolves the internal inconsistency between 
4
He 

and the other light elements, and it also results in excellent independent agreement 

with the baryon to photon ratio determined from WMAP. (Fig. 5). However, the 

magnitude of the variation is sensitive primarily to the observed 
4
He abundance, 

which has the smallest relative statistical error. A systematic error in the abundance 

of 
4
He could imitate the effect of the deuteron binding energy variation, although one 



114 
 

needs a systematic error which is very much greater than has been claimed in the 

most recent observational work. 

 

We note that Izotov and Thuan [25], the most recent estimate for Yp in our sample, 

argue that systematics are at most 0.6% for that survey. On the other hand, the 

possibility has also been explored that the creation of 
4
He in population III stars 

might mean that the true primordial 
4
He abundance is lower even than that seen in 

the most metal-poor objects [49]. If so, the significance of the deviation of δQ/Q 

from zero we report in this paper would be even larger. 

 

These results hopefully provide an extremely strong motivation to obtain 

substantially better measurements of all the light elements, and to explore even more 

intensively, the possible sources of systematic errors. 
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Code: 

FUNCTION PLJ(IA,IB)  

INCLUDE "cin.h"  

implicit real *8 (a-h,o-z)  

common/nnn/ee(NVM),nnn(NVM), kk(NVM),ll(NVM),jj(NVM),nlist  

COMMON /JZ/JZ(NJZMAX) /NH/NH(NJZMAX)  

T=0.d0  

NA=NH(IA)  

NB=NH(IB)  

IF (NA.NE.NB) GOTO 1000  

MA=JZ(IA)  

MB=JZ(IB)  

IF (MA.NE.MB+2) GOTO 1000  

JA=JJ(NA)  

T=JA*(JA+2)-MA*MB  

T=dSQRT(T)  

1000 PLJ=T  

RETUN  

END  

c  

SUBROUTINE DETS(IC,N1,N2)  

INCLUDE "cin.h"  

COMMON /NDC/NDC(NCMAX)  

IF(IC.EQ.1)THEN  

N1=1  

N2=NDC(1)  

ELSE  

II=0  

DO I=1,IC-1  

II=II+NDC(I)  

END DO  

N1=II+1  
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N2=II+NDC(IC)  

END IF  

RETURN  

END  

c  

SUBROUTINE FORMH  

INCLUDE "cin.h"  

implicit real*8 (a-h,o-z)  

COMMON /NC/NC /NE/NE /NV/NV  

COMMON /NCJ/NCJ(NCMAX) /COEF/COEF(NCOEF)  

c COMMON/AAA/MAA,III(NSTJ),JJJ(NSTJ)/AAAA/AA(NSTJ)  

common /aline/al(NXX) /nline/nind(NXX) /diag/diag(NXX)  

REAL COEF  

logical iwl  

real *8, allocatable :: a(:)  

integer, allocatable :: iii(:),jjj(:)  

INTEGER *2 nind  

IF(NV.GT.NXX)THEN  

PRINT 1,NV,NXX  

--  

1 FORMAT('' Too big matrix: NV='', i5,'' NXX='',i5)  

STOP  

END IF  

NDCMAX=0  

DO IC=1,NC  

NDCMAX=MAX0(NDCMAX,NDC(IC))  

END DO  

c IF(NDCMAX.GT.NSTJ)THEN  

c PRINT 23,NCMAX,NSTJ  

c 23 FORMAT('' NDCMAX='',I5,'' greater then (than?) NSTJ='',I5)  

c STOP  

c END IF  

ndcm2=NDCMAX**2  

allocate (aa(ndcm2),iii(ndcm2),jjj(ndcm2))  
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if(allocated(aa).and.allocated(iii).and.allocated(jjj))then  

print *,''OK''  

else  

stop ''allocation failed in FORMH''  

end if  

print *, '' Calculation of H:''  

c open (11,file=''/erased_at_5am_monday/dzuba/cin.buf'',  

c , status=''unknown'',form=''UNFORMATTED'')  

 

IND=0  

IVV=0  

c print *,'' nv='',nv  

DO 10 IV=1,NV  

ICI=NCJ(IV)  

CALL DETS(ICI,NI1,NI2)  

call coretest(ni1,idc1)  

NDI=NI2-NI2+1  

JVV=0  

ICJ0=0  

ii=0  

DO 20 JV=1,IV  

c iwl=iv.eq.1.and.jv.eq.1  

ICJ=NCJ(JV)  

CALL DETS(ICJ,NJ1,NJ2)  

call coretest(nj1,idc2)  

c if(idc1.eq.1.and.idc2.eq.1.and.iv.ne.jv) go to 21  

c if(iv.gt.1.and.jv.gt.1.and.iv.ne.jv) go to 21  

IF(ICJ0.NE.ICJ)THEN  

CALL MATRCO(ICI,ICJ,NI1,NI2,NJ1,NJ2,  

, MAA,III(1),JJJ(1)AA(1))  

ICJ0=ICJ  

END IF  

NDJ=NJ2-NJ1+1  

T=0.  
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IF(MAA.GT.0)THEN  

DO M=1,MAA  

T=T+COEF(IVV+III(M))*COEF(JVV+JJJ(M))*AA(M)  

END DO  

IND=IND+1  

ii=ii+1  

if(JV.EQ.IV)then  

AL(1)=T  

nind(1)=ii  

else  

AL(ii+1)=T  

nind(ii+1)=JV  

----  

end if  

c if(t.ne.0.d0)print 6,iv,jv,ici,icj,t  

c 6 format(''H:'',2i5,'' :'',2i5,f12.6)  

end if  

21 JVV=JVV+NDJ  

20 CONTINUE  

diag(iv)=T  

IF((IV/50)*50+1.EQ.IV)PRINT 5,IV,NT,T  

5 FORMAT(''H:'',2I6,F12.6)  

call dumpline(IV,ii)  

11 IVV=IVV+NDI  

10 CONTINUE  

call flush(ind)  

IF(NV.LT.6)PRINT 22, (AL(I),I=1,NV*(NV+1)/2)  

22 FORMAT(5E12.4)  

deallocate(aa,iii,jjj)  

RETURN  

END  

c  

subroutine coretest(id,ind)  

INCLUDE "cin.h"  



119 
 

implicit real*8 (a-h,o-z)  

dimension idet(128)  

common/nh/nh(njzmax) /ne/ne  

common/nnn/ee(NVM), nnn(NVM), kk(NVM), ll(NVM),jj(NVM),nlist  

call gdet(id,idet)  

ind=0  

do i=1,ne  

na=nh(idet(i))  

if(nnn(na).eq.3.and.ll(na).eq.1)ind=ind+1  

end do  

if(ind.ne.6)then  

ind=1  

else  

ind=0  

end if  

return  

end  

c  

subroutine flush(ind)  

INCLUDE "cin.h"  

implicit real*8 (a-h,o-z)  

common/matrix/a(NBLOCK) /matind/indx(NBLOCK)  

common/block/last,nb /NV/NV /MJ/MJ /NE/NE /diag/diag(NXX)  

INTEGER *2 indx  

if(last.gt.0)then  

write(11)(a(l),l=1,last)  

write(11)(indx(l),l=1,last)  

if(last.le.6)then  

print *,''Matrix:''  

print 1, (indx(l),l=1,last)  

1 format(6i13)  

print 2, (a(l),l=1,last)  

2 format(6e13.5)  

end if  
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nb=nb+1  

else  

last=NBLOCK  

end if  

close(11)  

open(12,file=''mat.par'',status=''UNKNOWN'' ,  

! form=''UNFORMATTED'')  

--  

pro=200.*ind/(nv*(nv+1))  

c print *,'' nv='' ,nv  

c print *,'' ind='' , ind  

c print *,'' pro='' ,pro  

c print *,'' nb='' ,nb  

c print *,'' nblock='' , nblock  

c print *,'' last='' , last  

print 11,nv,nv*(nv+1)/2,ind,pro,nb,NBLOCK,last  

11 format(''Number of states '',i10/  

/ '' Total matrix size '', i10/  

/ '' Number of non-zeros '',i10/  

/ '' Non-zero fraction '',f10.2,''%''/  

/ '' Number of blocks '', i10/  

/ '' Block size: NBLOCK= '',i10, ''last='',i10)  

write(12)mj,ne,NBLOCK,nv,ind,nb,last  

write(12)(diag(l),l=1,NV)  

close(12)  

return  

end  

с  

subroutine dumpline(iv,ii)  

INCLUDE "cin.h"  

implicit real*8 (a-h,o-z)  

common/aline/a1(NXX) /nline/nind(NXX) /block/last,nb  

common/matrix/a(NBLOCK) /matind/indx(NBLOCK)  

INTEGER *2 nind,indx  
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if(iv.eq.1)then  

last=0  

nb=0  

end if  

nind(1)=ii  

do i=1,ii  

last=last+1  

if(last.gt.NBLOCK)then  

nb=nb+1  

print 1,nb  

1 format(''Writing block #'',i3,''...'')  

write(11)(a(l),l=1,NBLOCK)  

write(11)(indx(l),l=1,NBLOCK)  

last=1  

end if  

a(last)=al(i)  

indx(last)=nind(i)  

end do  

return  

end 

 

More of the computer code is here: 

http://michaelmarchenko.weebly.com/uploads/3/0/2/7/30272185/cin1.docx 

http://michaelmarchenko.weebly.com/uploads/3/0/2/7/30272185/code2.rar 

http://michaelmarchenko.weebly.com/uploads/3/0/2/7/30272185/code3.rar 
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